Lipin-1 (h): 293T Lysate: sc-114816

The Power to Question

BACKGROUND

The Lipin family of nuclear proteins contains three members: Lipin-1, Lipin-2 and Lipin-3, all of which contain a nuclear signal sequence, a highly conserved amino-terminal (NLIP) domain and a carboxy-terminal (CLIP) domain. Lipin-1 is crucial for normal adipose tissue development and metabolism. Lipin-1 selectively activates a subset of PGC-1 α target pathways, including fatty acid oxidation and mitochondrial oxidative phosphorylation by inducing expression of the nuclear receptor PPAR α . Lipin-1 also inactivates the lipogenic program and suppresses circulating lipid levels. An abundance of Lipin-1 promotes fat accumulation and Insulin sensitivity, whereas a deficiency in Lipin-1 may deter normal adipose tissue development, resulting in Insulin resistance and lipodystrophy, a heterogeneous group of disorders characterized by loss of body fat, fatty liver, hypertriglyceridemia and Insulin resistance.

REFERENCES

- 1. Péterfy, M., Phan, J., Xu, P. and Reue, K. 2001. Lipodystrophy in the fld mouse a nuclear protein, lipin. Nat. Genet. 27: 121-124.
- Online Mendelian Inheritance in Man, OMIM™. 2002. Johns Hopkins University, Baltimore, MD. MIM Number: 605518. World Wide Web URL: http://www.ncbi.nlm.nih.gov/omim/
- 3. Reitman, M.L. 2005. The fat and thin of lipin. Cell Metab. 1: 5-6.
- Phan, J. and Reue, K. 2005. Lipin, a lipodystrophy and obesity gene. Cell Metab. 1: 73-83.
- Phan, J., Peterfy, M. and Reue, K. 2005. Biphasic expression of lipin suggests dual roles in adipocyte development. Drug News Perspect. 18: 5-11.
- 6. Finck, B.N., Gropler, M.C., Chen, Z., Leone, T.C., Croce, M.A., Harris, T.E., Lawrence, J.C. and Kelly, D.P. 2006. Lipin-1 is an inducible amplifier of the hepatic PGC-1α/PPARα regulatory pathway. Cell Metab. 4: 199-210.
- 7. Han, G.S., Wu, W.I. and Carman, G.M. 2006. The Saccharomyces cerevisiae Lipin homolog is a Mg²⁺-dependent phosphatidate phosphatase enzyme. J. Biol. Chem. 281: 9210-9218.
- 8. Larosa, P.C., Miner, J., Xia, Y., Zhou, Y., Kachman, S. and Fromm, M.E. 2006. *Trans*-10, *cis*-12 conjugated linoleic acid causes inflammation and delipidation of white adipose tissue in mice: a microarray and histological analysis. Physiol. Genomics 27: 282-294.
- Suviolahti, E., Reue, K., Cantor, R.M., Phan, J., Gentile, M., Naukkarinen, J., Soro-Paavonen, A., Oksanen, L., Kaprio, J., Rissanen, A., Salomaa, V., Kontula, K., Taskinen, M.R., Pajukanta, P. and Peltonen, L. 2006. Cross-species analyses implicate Lipin-1 involvement in human glucose metabolism. Hum. Mol. Genet. 15: 377-386.

STORAGE

Store at -20° C. Repeated freezing and thawing should be minimized. Sample vial should be boiled once prior to use. Non-hazardous. No MSDS required.

PROTOCOLS

See our web site at www.scbt.com for detailed protocols and support products.

CHROMOSOMAL LOCATION

Genetic locus: LPIN1 (human) mapping to 2p25.1.

PRODUCT

Lipin-1 (h): 293T Lysate represents a lysate of human Lipin-1 transfected 293T cells and is provided as 100 µg protein in 200 µl SDS-PAGE buffer.

APPLICATIONS

Lipin-1 (h): 293T Lysate is suitable as a Western Blotting positive control for human reactive Lipin-1 antibodies. Recommended use: 10-20 µl per lane.

Control 293T Lysate: sc-117752 is available as a Western Blotting negative control lysate derived from non-transfected 293T cells.

RESEARCH USE

For research use only, not for use in diagnostic procedures.

Santa Cruz Biotechnology, Inc. 1.800.457.3801 831.457.3801 Fax 831.457.3801 Europe +00800 4573 8000 49 6221 4503 0 www.scbt.com