p22-phox (h2): 293T Lysate: sc-115039

The Power to Question

BACKGROUND

Mox1 and the glycoprotein gp91-phox are largely related proteins that are essential components of the NADPH oxidase. The superoxide-generating NADPH oxidase is present in phagocytes, neuroepithelial bodies, vascular smooth muscle cells and endothelial cells. It includes a membrane-bound flavocytochrome containing two subunits, gp91-phox and p22-phox, and the cytosolic proteins p47-phox and p67-phox. During activation of the NADPH oxidase, p47-phox and p67-phox migrate to the plasma membrane where they associate with the flavocytochrome, cytochrome b558, to form the active enzyme complex. The p22 and gp91-phox subunits also function as surface O₂ sensors that initiate cellular signaling in response to hypoxic conditions.

REFERENCES

- 1. Henderson, L.M., et al. 1995. The arachidonate-activable, NADPH oxidase-associated H+ channel. Evidence that gp91-phox functions as an essential part of the channel. J. Biol. Chem. 270: 5909-5916.
- Ushio-Fukai, M., et al. 1996. p22-phox is a critical component of the superoxide-generating NADH/NADPH oxidase system and regulates angiotensin II-induced hypertrophy in vascular smooth muscle cells.
 J. Biol. Chem. 271: 23317-23321.
- Suh, Y.A., et al. 1999. Cell transformation by the superoxide-generating oxidase Mox1. Nature 401: 79-82.
- Nisimoto, Y., et al. 1999. The p67(phox) activation domain regulates electron flow from NADPH to flavin in flavocytochrome b(558). J. Biol. Chem. 274: 22999-23005.
- 5. Archer, S.L., et al. 1999. $\rm O_2$ sensing is preserved in mice lacking the gp91-phox subunit of NADPH oxidase. Proc. Natl. Acad. Sci. USA 96: 7944-7949.
- Yang, S., et al. 1999. Superoxide generation in transformed B-lymphocytes from patients with severe, malignant osteopetrosis. Mol. Cell. Biochem. 199: 15-24.
- 7. Meyer, J.W., et al. 1999. Identification of a functional leukocyte-type NADPH oxidase in human endothelial cells: a potential atherogenic source of reactive oxygen species. Endothelium 7: 11-22.
- 8. Moreno, M.U., et al. 2003. Preliminary characterisation of the promoter of the human p22(phox) gene: identification of a new polymorphism associated with hypertension. FEBS Lett. 542: 27-31.
- Groemping, Y, et al. 2003. Molecular basis of phosphorylation-induced activation of the NADPH oxidase. Cell 113: 343-355.

CHROMOSOMAL LOCATION

Genetic locus: CYBA (human) mapping to 16q24.3.

PRODUCT

p22-phox (h2): 293T Lysate represents a lysate of human p22-phox transfected 293T cells and is provided as 100 μ g protein in 200 μ l SDS-PAGE buffer.

APPLICATIONS

p22-phox (h2): 293T Lysate is suitable as a Western Blotting positive control for human reactive p22-phox antibodies Recommended use: 10-20 μ l per lane

Control 293T Lysate: sc-117752 is available as a Western Blotting negative control lysate derived from non-transfected 293T cells.

STORAGE

Store at -20° C. Repeated freezing and thawing should be minimized. Sample vial should be boiled once prior to use. Non-hazardous. No MSDS required.

RESEARCH USE

For research use only, not for use in diagnostic procedures.

PROTOCOLS

See our web site at www.scbt.com for detailed protocols and support products.

Santa Cruz Biotechnology, Inc. 1.800.457.3801 831.457.3801 fax 831.457.3801 Europe +00800 4573 8000 49 6221 4503 0 www.scbt.com