# $\alpha$ -2M (h): 293T Lysate: sc-115474



The Power to Question

# **BACKGROUND**

 $\alpha\text{-}2$  Macroglobulin ( $\alpha\text{-}2\text{M})$  is a homotetrameric serum protein consisting of four identical subunits that form dimers through disulfide bonds. Initially,  $\alpha\text{-}2\text{M}$  was characterized as a pan-proteinase inhibitor that was able to "bait" proteinases into cleaving specific peptide sequences on  $\alpha\text{-}2\text{M}$ . This interaction induces a conformational change in  $\alpha\text{-}2\text{M}$ , thus enabling it to "trap" the proteinase and inhibit its further activity. Subsequently,  $\alpha\text{-}2\text{M}$  has also been shown to function as a carrier protein and regulator of cytokines during inflammation. Circulating transforming growth factor  $\beta$  (TGF $\beta$ ) in serum is primarily bound to  $\alpha\text{-}2\text{M}$ , which renders TGF $\beta$  inactive.  $\alpha\text{-}2\text{M}$  also binds to IL-6 and, thereby, increases the concentration of IL-6 near lymphocytes, hepatocytes and stem cells involved in mediating the inflammatory cascade. Mutations and deletions in the gene encoding  $\alpha\text{-}2\text{M}$  are associated with an increased incidence of Alzheimer's Disease (AD), which is consistent with the role of  $\alpha\text{-}2\text{M}$  in mediating the clearance and degradation of A $\beta$ , the major component of  $\beta\text{-}\text{Amyloid}$  deposits accumulated during AD.

# **REFERENCES**

- 1. Barrett, A.J., et al. 1973. The interaction of  $\alpha$ -2 Macroglobulin with proteinases. Characteristics and specificity of the reaction, and a hypothesis concerning its molecular mechanism. Biochem. J. 133: 709-724.
- 2. Tsuchiya, Y., et al. 1987. Sequence analysis of the putative regulatory region of rat  $\alpha$ -2 Macroglobulin gene. Gene 57: 73-80.
- 3. Borth, W., et al. 1990. Binding of IL-1  $\beta$  to  $\alpha$  Macroglobulins and release by Thioredoxin. J. Immunol. 145: 3747-3754.
- 4. Poller, W., et al. 1992. Cloning of the human  $\alpha$ -2 Macroglobulin gene and detection of mutations in two functional domains: the bait region and the thiolester site. Hum. Genet. 88: 313-319.
- 5. Webb, D.J., et al. 1998. Localization of the binding site for TGF $\beta$  in human  $\alpha$ -2 Macroglobulin to a 20 kDa peptide that also contains the bait region. J. Biol. Chem. 273: 13339-13346.
- 6. Blacker, D., et al. 1998.  $\alpha$ -2 Macroglobulin is genetically associated with Alzheimer disease. Nat. Genet. 19: 357-360.

# CHROMOSOMAL LOCATION

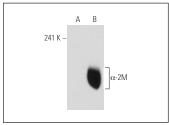
Genetic locus: A2M (human) mapping to 12p13.31.

# **PRODUCT**

 $\alpha\text{-}2\text{M}$  (h): 293T Lysate represents a lysate of human  $\alpha\text{-}2\text{M}$  transfected 293T cells and is provided as 100  $\mu g$  protein in 200  $\mu l$  SDS-PAGE buffer.

#### **APPLICATIONS**

 $\alpha$ -2M (h): 293T Lysate is suitable as a Western Blotting positive control for human reactive  $\alpha$ -2M antibodies. Recommended use: 10-20  $\mu$ l per lane.


Control 293T Lysate: sc-117752 is available as a Western Blotting negative control lysate derived from non-transfected 293T cells.

 $\alpha$ -2M (2D9): sc-69750 is recommended as a positive control antibody for Western Blot analysis of enhanced human  $\alpha$ -2M expression in  $\alpha$ -2M transfected 293T cells (starting dilution 1:100, dilution range 1:100-1:1,000).

#### **STORAGE**

Store at -20° C. Repeated freezing and thawing should be minimized. Sample vial should be boiled once prior to use. Non-hazardous. No MSDS required.

# **DATA**



 $\alpha\text{-}2M$  (2D9); sc-69750. Western blot analysis of  $\alpha\text{-}2M$  expression in non-transfected; sc-117752 (**A**) and human  $\alpha\text{-}2M$  transfected; sc-115474 (**B**) 293T whole scall heater

# **RESEARCH USE**

For research use only, not for use in diagnostic procedures.

# **PROTOCOLS**

See our web site at www.scbt.com for detailed protocols and support products.

Santa Cruz Biotechnology, Inc. 1.800.457.3801 831.457.3801 Fax 831.457.3801 Europe +00800 4573 8000 49 6221 4503 0 www.scbt.com