γ-GCSc (h): 293T Lysate: sc-115522

The Power to Question

BACKGROUND

The GCLC gene consists of 16 exons and encodes the 636 amino acid protein $\gamma\text{-GCSc}$ ($\gamma\text{-glutamylcysteine}$ synthetase heavy subunit), also designated $\gamma\text{-L-glutamate-L-cysteine}$ ligase catalytic subunit (GLCLC). $\gamma\text{-GCSc}$ is expressed in hemocytes, brain, liver and kidney. $\gamma\text{-GCSc}$ associates with a regulatory or modifier subunit, $\gamma\text{-GCSm}$ ($\gamma\text{-glutamylcysteine}$ synthetase light subunit), to form a heterodimer, $\gamma\text{-GCS}$. $\gamma\text{-GCS}$ is the first enzyme involved and the rate determining step in glutathione biosynthesis. Oxidants, cadium and methyl mercury upregulate the transcription of $\gamma\text{-GCS}$. H_2O_2 regulation depends on the Yap1 protein and the presence of glutamate, glutamine and lysine. Cadium regulates transcription through proteins Met-4, Met-31 and Met-32. Cbf1, a DNA binding protein, inhibits transcription of $\gamma\text{-GCS}$. Chemopreventive compounds cause increased levels of $\gamma\text{-GCSc}$ in kidney tissues, which may protect against chemically induced carcinogenesis. A His370Leu amino acid change in $\gamma\text{-GCSc}$ causes deficiencies in activity which are responsible for hemolytic anemia and low red blood cell glutathione levels.

REFERENCES

- 1. Lunn, G., Dale, G.L. and Beutler, E. 1979. Transport accounts for glutathione turnover in human erythrocytes. Blood 54: 238.
- 2. Sierra-Rivera, E., Summar, M.L., Dasouki, M., Krishnamani, M.R.S., Phillips, J.A. and Freeman, M.L. 1995. Assignment of the gene (GLCLC) that encodes the heavy subunit of γ -glutamylcysteine synthetase to human chromosome 6. Cytogenet. Cell Genet. 70: 278-279.
- 3. Walsh, A.C., Li, W., Rosen, D.R. and Lawrence, D.A. 1996. Genetic mapping of GLCLC, the human gene encoding the catalytic subunit of γ -glutamyl-cysteine synthetase, to chromosome band 6p12 and characterization of a polymorphic trinucleotide repeat within its 5' untranslated region. Cytogenet. Cell Genet. 75: 14-16.
- Stephen, D.W. and Jamieson, D.J. 1997. Amino acid-dependent regulation of the *Saccharomyces cerevisiae* GSH1 gene by hydrogen peroxide. Mol. Microbiol. 23: 203-210.
- 5. Thompson, S.A., White, C.C., Krejsa, C.M., Diaz, D., Woods, J.S., Eaton, D.L. and Kavanagh, T.J. 1999. Induction of glutamate-cysteine ligase (γ-glutamyl-cysteine synthetase) in the brains of adult female mice subchronically exposed to methylmercury. Toxicol. Lett. 110: 1-9.
- 6. Beutler, E., Gelbart, T., Kondo, T. and Matsunaga, A.T. 1999. The molecular basis of a case of γ -glutamylcysteine synthetase deficiency. Blood 94: 2890-2894.
- Gipp, J.J. and Mulcahy, R.T. 2000. Structure of the human glutamate-Lcysteine ligase catalytic (GLCLC) subunit gene. Cytogenet. Cell Genet. 88: 130-132.
- Dormer, U.H., Westwater, J., McLaren, N.F., Kent, N.A., Mellor, J. and Jamieson, D.J. 2000. Cadmium-inducible expression of the yeast GSH1 gene requires a functional sulfur-amino acid regulatory network. J. Biol. Chem. 275: 32611-32616.
- Soltaninassab, S.R., Sekhar, K.R., Meredith, M.J. and Freeman, M.L. 2000. Multi-faceted regulation of γ-glutamylcysteine synthetase. J. Cell. Physiol. 182: 163-170.

CHROMOSOMAL LOCATION

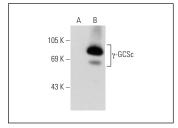
Genetic locus: GCLC (human) mapping to 6p12.1.

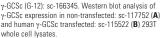
PRODUCT

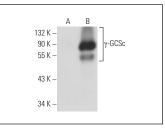
γ-GCSc (h): 293T Lysate represents a lysate of human γ-GCSc transfected 293T cells and is provided as 100 μg protein in 200 μl SDS-PAGE buffer.

APPLICATIONS

 γ -GCSc (h): 293T Lysate is suitable as a Western Blotting positive control for human reactive γ -GCSc antibodies. Recommended use: 10-20 μ l per lane.


Control 293T Lysate: sc-117752 is available as a Western Blotting negative control lysate derived from non-transfected 293T cells.


 γ -GCSc (G-12): sc-166345 is recommended as a positive control antibody for Western Blot analysis of enhanced human γ -GCSc expression in γ -GCSc transfected 293T cells (starting dilution 1:100, dilution range 1:100-1:1,000).


RECOMMENDED SUPPORT REAGENTS

To ensure optimal results, the following support reagents are recommended: 1) Western Blotting: use m-lgG κ BP-HRP: sc-516102 or m-lgG κ BP-HRP (Cruz Marker): sc-516102-CM (dilution range: 1:1000-1:10000), Cruz MarkerTM Molecular Weight Standards: sc-2035, UltraCruz® Blocking Reagent: sc-516214 and Western Blotting Luminol Reagent: sc-2048.

DATA

 $\gamma\text{-GCSc}$ (F-9): sc-166356. Western blot analysis of $\gamma\text{-GCSc}$ expression in non-transfected: sc-117752 (**A**) and human $\gamma\text{-GCSc}$ transfected: sc-115522 (**B**) 293T whole cell lysates.

STORAGE

Store at -20° C. Repeated freezing and thawing should be minimized. Sample vial should be boiled once prior to use. Non-hazardous. No MSDS required.

RESEARCH USE

For research use only, not for use in diagnostic procedures.

PROTOCOLS

See our web site at www.scbt.com for detailed protocols and support products.

Santa Cruz Biotechnology, Inc. 1.800.457.3801 831.457.3801 Fax 831.457.3801 Europe +00800 4573 8000 49 6221 4503 0 www.scbt.com