# Ferrochelatase (h): 293T Lysate: sc-115804



The Power to Overtin

#### **BACKGROUND**

Ferrochelatase, also designated heme synthetase or protoheme ferrolyase, is the terminal enzyme of protoheme biosynthesis that catalyzes the ferrous form of iron insertion into protoporphyrin IX. Mature Ferrochelatase is a homodimeric, mitochondrial membrane-associated protein translated downstream of an N-terminal 54 amino acid transit peptide. Ferrochelatase contains two nitric oxide (NO)-sensitive clusters and coordinated 2FE-2S clusters which may potentially serve as a nitric oxide sensor. Defects in the gene encoding the Ferrochelatase enzyme, FECH, cause erythropoietic protoporhyria (EPP), which is a dominantly inherited disease of porphyrin metabolism characterized by photosensitivity and hepatobiliary disease.

# **REFERENCES**

- 1. Davies, R., et al. 2005. Hepatic gene expression in protoporphyric Fech mice is associated with cholestatic injury but not a marked depletion of the heme regulatory pool. Am. J. Pathol. 166: 1041-1053.
- 2. Di Pierro, E., et al. 2005. A point mutation affecting an Sp1 binding site in the promoter of the Ferrochelatase gene impairs gene transcription and causes erythropoietic protoporphyria. Exp. Hematol. 33: 584-591.
- Elder, G., et al. 2005. Normal dermal Ferrochelatase activity does not protect human skin from protoporphyrin-induced photosensitivity. J. Invest. Dermatol. 125: 580.
- 4. Franco, R., et al. 2005. Porphyrin-substrate binding to murine Ferrochelatase: effect on the thermal stability of the enzyme. Biochem. J. 386: 599-605.
- Najahi-Missaoui, W., et al. 2005. Production and characterization of erythropoietic protoporphyric heterodimeric Ferrochelatases. Blood 106: 1098-1104.
- Goodwin, R.G., et al. 2005. Photosensitivity and acute liver injury in myeloproliferative disorder secondary to late-onset protoporphyria caused by deletion of a Ferrochelatase gene in hematopoietic cells. Blood 107: 60-62.
- Ohgari, Y., et al. 2005. Ferrochelatase consisting of wildtype and mutated subunits from patients with a dominant-inherited disease, erythropoietic protoporphyria, is an active but unstable dimer. Hum. Mol. Genet. 14: 327-334.
- Shipovskov, S., et al. 2005. Metallation of the transition-state inhibitor N-methyl mesoporphyrin by Ferrochelatase: implications for the catalytic reaction mechanism. J. Mol. Biol. 352: 1081-1090.
- Sobotka, R., et al. 2005. Photosystem II assembly in CP47 mutant of Synechocystis sp. PCC 6803 is dependent on the level of chlorophyll precursors regulated by Ferrochelatase. J. Biol. Chem. 280: 31595-31602.

#### CHROMOSOMAL LOCATION

Genetic locus: FECH (human) mapping to 18q21.31.

#### **PRODUCT**

Ferrochelatase (h): 293T Lysate represents a lysate of human Ferrochelatase transfected 293T cells and is provided as 100  $\mu$ g protein in 200  $\mu$ l SDS-PAGE buffer.

#### **APPLICATIONS**

Ferrochelatase (h): 293T Lysate is suitable as a Western Blotting positive control for human reactive Ferrochelatase antibodies. Recommended use:  $10\text{-}20~\mu\text{l}$  per lane.

Control 293T Lysate: sc-117752 is available as a Western Blotting negative control lysate derived from non-transfected 293T cells.

# **STORAGE**

Store at -20° C. Repeated freezing and thawing should be minimized. Sample vial should be boiled once prior to use. Non-hazardous. No MSDS required.

#### **RESEARCH USE**

For research use only, not for use in diagnostic procedures.

### **PROTOCOLS**

See our web site at www.scbt.com for detailed protocols and support products.

**Santa Cruz Biotechnology, Inc.** 1.800.457.3801 831.457.3800 fax 831.457.3801 **Europe** +00800 4573 8000 49 6221 4503 0 **www.scbt.com**