20S Proteasome α 2 (h): 293T Lysate: sc-116165

The Power to Overtin

BACKGROUND

The proteasome represents a large protein complex that exists inside all eukaryotes and archaea, and in some bacteria. The main function of proteasomes is to degrade unnecessary or damaged proteins by proteolysis. The most common form of the proteasome, known as the 26S Proteasome, contains one 20S Proteasome core particle structure and two 19S regulatory caps. The 20S Proteasome core is hollow and forms an enclosed cavity, where proteins are degraded, as well as openings at the two ends to allow the target protein to enter. The 20S Proteasome core particle contains many subunits, depending on the organism. All of the subunits fall into one of two types: α subunits, which are structural, serve as docking domains for the regulatory particles and exterior gates blocking unregulated access to the interior cavity; or β subunits, which are predominantly catalytic. The outer two rings in the proteasome consist of seven α subunits each, and the inner two rings each consist of seven β subunits.

REFERENCES

- Kristensen, P., et al. 1995. Human proteasome subunits from two-dimensional gels identified by partial sequencing. Biochem. Biophys. Res. Commun. 205: 1785-1789.
- Morimoto, Y., et al. 1995. Ordered structure of the crystallized bovine 20S Proteasome. J. Biochem. 117: 471-474.
- 3. Wenzel, T. and Baumeister, W. 1995. Conformational constraints in protein degradation by the 20S Proteasome. Nat. Struct. Biol. 2: 199-204.
- 4. Schmidt, M., et al. 1997. Structure and structure formation of the 20S Proteasome. Mol. Biol. Rep. 24: 103-112.
- Sassa, H., et al. 2000. Primary structural features of the 20S Proteasome subunits of rice (Oryza sativa). Gene 250: 61-66.
- Ferrington, D.A. and Kapphahn, R.J. 2004. Catalytic site-specific inhibition of the 20S Proteasome by 4-hydroxynonenal. FEBS Lett. 578: 217-223.
- 7. Madding, L.S., et al. 2006. Role of the β1 subunit in the function and stability of the 20S Proteasome in the hyperthermophilic archaeon *Pyrococcus furiosus*. J. Bacteriol. 189: 583-590.

CHROMOSOMAL LOCATION

Genetic locus: PSMA2 (human) mapping to 7p14.1.

PRODUCT

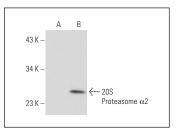
20S Proteasome α 2 (h): 293T Lysate represents a lysate of human 20S Proteasome α 2 transfected 293T cells and is provided as 100 µg protein in 200 µl SDS-PAGE buffer.

STORAGE

Store at -20° C. Repeated freezing and thawing should be minimized. Sample vial should be boiled once prior to use. Non-hazardous. No MSDS required.

PROTOCOLS

See our web site at www.scbt.com for detailed protocols and support products.


APPLICATIONS

20S Proteasome α 2 (h): 293T Lysate is suitable as a Western Blotting positive control for human reactive 20S Proteasome α 2 antibodies. Recommended use: 10-20 μ 1 per lane.

Control 293T Lysate: sc-117752 is available as a Western Blotting negative control lysate derived from non-transfected 293T cells.

20S Proteasome α 2 (MCP21): sc-58413 is recommended as a positive control antibody for Western Blot analysis of enhanced human 20S Proteasome α 2 expression in 20S Proteasome α 2 transfected 293T cells (starting dilution 1:100, dilution range 1:100-1:1,000).

DATA

20S Proteasome α 2 (MCP21): sc-58413. Western blot analysis of 20S Proteasome α 2 expression in non-transfected: sc-117752 ($\bf A$) and human 20S Proteasome α 2 transfected: sc-116165 ($\bf B$) 293T whole cell Iysates.

RESEARCH USE

For research use only, not for use in diagnostic procedures.

Santa Cruz Biotechnology, Inc. 1.800.457.3801 831.457.3800 fax 831.457.3801 Europe +00800 4573 8000 49 6221 4503 0 www.scbt.com