PNPase (h): 293T Lysate: sc-116464

The Power to Question

BACKGROUND

Mitochondrial polyribonucleotide nucleotidyltransferase, also designated 3'-5' RNA exonuclease, OLD35, PNPase or PNPT1, is an evolutionaly conserved protein in which the mouse protein shares 90% identity with the human version. PNPase participates in mRNA degradation and hydrolyzes single-stranded ribonucleotides in the 3' to 5' direction. PNPase forms homotrimers and is upregulated in response to interferon- β induction. The N-terminus of PNPase contains a putative mitochondrial targeting sequence; mutation analysis confirms that N-terminal sequences of PNPase target the protein to the mitochondria. Endogenous PNPase also co-localizes with a mitochondrial marker protein in HeLa cells.

REFERENCES

- Bermúdez-Cruz, R.M., Fernández-Ramírez, F., Kameyama-Kawabe, L. and Montañez, C. 2005. Conserved domains in polynucleotide phosphorylase among eubacteria. Biochimie 87: 737-745.
- 2. Bollenbach, T.J., Lange, H., Gutierrez, R., Erhardt, M., Stern, D.B. and Gagliardi, D. 2005. RNR1, a 3'-5' exoribonuclease belonging to the RNR superfamily, catalyzes 3' maturation of chloroplast ribosomal RNAs in *Arabidopsis thaliana*. Nucleic Acids Res. 33: 2751-2563.
- Oussenko, I.A., Abe, T., Ujiie, H., Muto, A. and Bechhofer, D.H. 2005. Par-ticipation of 3'-to-5' exoribonucleases in the turnover of *Bacillus subtilis* mRNA. J. Bacteriol. 187: 2758-2767.
- 4. Sarkar, D., Park, E.S., Emdad, L., Randolph, A., Valerie, K. and Fisher, P.B. 2005. Defining the domains of human polynucleotide phosphorylase (hPNPaseOLD-35) mediating cellular senescence. Mol. Cell. Biol. 25: 7333-7343.
- 5. Gewartowski, K., Tomecki, R., Muchowski, L., Dmochow Ska, A., Dzwonek, A., Malecki, M., Skurzak, H., Ostrowski, J. and Stepien, P.P. 2006. Up-regulation of human PNPase mRNA by β -interferon has no effect on protein level in melanoma cell lines. Acta Biochim. Pol. 53: 179-188.
- Chen, H.W., Koehler, C.M. and Teitell, M.A. 2007. Human polynucleotide phosphorylase: location matters. Trends Cell Biol. 17: 600-608.
- Portnoy, V., Palnizky, G., Yehudai-Resheff, S., Glaser, F. and Schuster, G. 2008. Analysis of the human polynucleotide phosphorylase (PNPase) reveals differences in RNA binding and response to phosphate compared to its bacterial and chloroplast counterparts. RNA 14: 297-309.
- Slomovic, S. and Schuster, G. 2008. Stable PNPase RNAi silencing: its
 effect on the processing and adenylation of human mitochondrial RNA.
 RNA 14: 310-323.

CHROMOSOMAL LOCATION

Genetic locus: PNPT1 (human) mapping to 2p16.1.

PRODUCT

PNPase (h): 293T Lysate represents a lysate of human PNPase transfected 293T cells and is provided as 100 µg protein in 200 µl SDS-PAGE buffer.

APPLICATIONS

PNPase (h): 293T Lysate is suitable as a Western Blotting positive control for human reactive PNPase antibodies. Recommended use: 10-20 µl per lane.

Control 293T Lysate: sc-117752 is available as a Western Blotting negative control lysate derived from non-transfected 293T cells.

STORAGE

Store at -20° C. Repeated freezing and thawing should be minimized. Sample vial should be boiled once prior to use. Non-hazardous. No MSDS required.

RESEARCH USE

For research use only, not for use in diagnostic procedures.

PROTOCOLS

See our web site at www.scbt.com for detailed protocols and support products.

Santa Cruz Biotechnology, Inc. 1.800.457.3801 831.457.3801 Fax 831.457.3801 Europe +00800 4573 8000 49 6221 4503 0 www.scbt.com