3β-HSD2 (m): 293T Lysate: sc-117972

The Power to Question

BACKGROUND

 3β -hydroxysteroid dehydrogenase (3β -HSD), also known as HSD3B1 or HSDB3, is a bifunctional enzyme that plays a crucial role in the synthesis of all classes of hormonal steroids. Two human 3β -HSD proteins, designated type I (3β -HSD) and type II (3β -HSD2), are expressed by different genes and function in different areas of the body. Localized to the membrane of the endoplasmic reticulum (ER) and expressed in testis, ovaries and adrenal gland, 3β -HSD2 is the type II protein that catalyzes the oxidative conversion of δ 5-ene- 3β -hydroxysteroid, as well as the conversion of various ketosteroids. Defects in the gene encoding 3β -HSD2 are the cause of adrenal hyperplasia type 2 (AH2), a form of recessive congenital adrenal hyperplasia that is characterized by excess androgen which can lead to ambiguous genitalia and rapid somatic growth.

REFERENCES

- 1. Thomas, J.L., et al. 2002. Structure/function relationships responsible for the kinetic differences between human type 1 and type 2 3β -hydroxysteroid dehydrogenase and for the catalysis of the type 1 activity. J. Biol. Chem. 277: 42795-42801.
- Thomas, J.L., et al. 2003. Structure/function relationships responsible for coenzyme specificity and the isomerase activity of human type 1 3β-hydroxysteroid dehydrogenase/isomerase. J. Biol. Chem. 278: 35483-35490.
- 3. Foti, D.M. and Reichardt, J.K. 2004. YY1 binding within the human HSD3B2 gene intron 1 is required for maximal basal promoter activity: identification of YY1 as the 3β1-A factor. J. Mol. Endocrinol. 33: 99-119.
- 4. Thomas, J.L., et al. 2004. Serine 124 completes the Tyr, Lys and Ser triad responsible for the catalysis of human type 1 3β-hydroxysteroid dehydrogenase. J. Mol. Endocrinol. 33: 253-261.
- Carbunaru, G., et al. 2004. The hormonal phenotype of nonclassic 3β-hydroxysteroid dehydrogenase (HSD3B) deficiency in hyperandrogenic females is associated with Insulin-resistant polycystic ovary syndrome and is not a variant of inherited HSD3B2 deficiency. J. Clin. Endocrinol. Metab. 89: 783-794.
- 6. Thomas, J.L., et al. 2007. Structure/function of human type 1 3β -hydroxysteroid dehydrogenase: An intrasubunit disulfide bond in the Rossmannfold domain and a Cys residue in the active site are critical for substrate and coenzyme utilization. J. Steroid Biochem. Mol. Biol. 107: 80-87.
- 7. Wang, L., et al. 2007. Human 3β -hydroxysteroid dehydrogenase types 1 and 2: Gene sequence variation and functional genomics. J. Steroid Biochem. Mol. Biol. 107: 88-99.
- 8. Park, J.Y., et al. 2007. Association between polymorphisms in HSD3B1 and UGT2B17 and prostate cancer risk. Urology 70: 374-379.
- 9. Xing, Y., et al. 2008. The farnesoid X receptor regulates transcription of 3β -hydroxysteroid dehydrogenase type 2 in human adrenal cells. Mol. Cell. Endocrinol. 299: 153-162.

CHROMOSOMAL LOCATION

Genetic locus: Hsd3b2 (mouse) mapping to 3 F2.2.

RESEARCH USE

For research use only, not for use in diagnostic procedures.

PRODUCT

 3β -HSD2 (m): 293T Lysate represents a lysate of mouse 3β -HSD2 transfected 293T cells and is provided as 100 μ g protein in 200 μ l SDS-PAGE buffer.

APPLICATIONS

 3β -HSD2 (m): 293T Lysate is suitable as a Western Blotting positive control for mouse reactive 3β -HSD2 antibodies. Recommended use: 10-20 μl per lane

Control 293T Lysate: sc-117752 is available as a Western Blotting negative control lysate derived from non-transfected 293T cells.

STORAGE

Store at -20° C. Repeated freezing and thawing should be minimized. Sample vial should be boiled once prior to use. Non-hazardous. No MSDS required.

PROTOCOLS

See our web site at www.scbt.com for detailed protocols and support products.

Santa Cruz Biotechnology, Inc. 1.800.457.3801 831.457.3800 fax 831.457.3801 **Europe** +00800 4573 8000 49 6221 4503 0 **www.scbt.com**