EHHADH (m): 293T Lysate: sc-119960

The Power to Question

BACKGROUND

Peroxisomes play an important role in the oxidation of fatty acids via $\beta\text{-oxidation}$, which is carried out by two distinct pathways; the L-hydroxy-specific classical $\beta\text{-oxidation}$ for very long straight-chain fatty acids and the D-hydroxy-specific $\beta\text{-oxidation}$ for branched-chain fatty acids. A defect in either pathway can result in elevated serum levels of fatty-acids, leading to severe mental retardation and early death. As an L-hydroxy-specific enzyme, EHHADH (enoyl-CoA-hydratase:3-hydroxyacyl-CoA dehydrogenase), also known as Peroxisomal L-bifunctional enzyme, is a 723 amino acid protein has an essential tripeptide sequence on its carboxyl-terminus that is required for peroxisomal transport. EHHADH-null mice only exhibit a blunted peroxisome proliferative response when challenged with a peroxisome proliferator. Since there were no observed changes in lipid metabolism, this evidence suggests that enoyl-CoAs were diverted to the D-hydroxy-specific $\beta\text{-oxidation}$ system for metabolism.

REFERENCES

- Chen, G.L., et al. 1991. Import of human bifunctional enzyme into peroxisomes of human hepatoma cells in vitro. Biochem. Biophys. Res. Commun. 178: 1084-1091.
- Hoefler, G., et al. 1994. cDNA cloning of the human peroxisomal enoyl-CoA hydratase: 3-hydroxyacyl-CoA dehydrogenase bifunctional enzyme and localization to chromosome 3q26.3-3q28: a free left Alu Arm is inserted in the 3' noncoding region. Genomics 19: 60-67.
- 3. Qi, C., et al. 1999. Absence of spontaneous peroxisome proliferation in enoyl-CoA Hydratase/L-3-hydroxyacyl-CoA dehydrogenase-deficient mouse liver. Further support for the role of fatty acyl CoA oxidase in PPAR α ligand metabolism. J. Biol. Chem. 274: 15775-15780.
- DeWan, A.T., et al. 2001. A genome scan for renal function among hypertensives: the HyperGEN study. Am. J. Hum. Genet. 68: 136-144.
- 5. Online Mendelian Inheritance in Man, OMIM™. 2003. Johns Hopkins University, Baltimore, MD. MIM Number: 607037. World Wide Web URL: http://www.ncbi.nlm.nih.gov/omim/
- Wanders, R.J. and Waterham, H.R. 2006. Peroxisomal disorders: the single peroxisomal enzyme deficiencies. Biochim. Biophys. Acta 1763: 1707-1720.
- Yeh, C.S., et al. 2006. Fatty acid metabolism pathway play an important role in carcinogenesis of human colorectal cancers by Microarray-Bioinformatics analysis. Cancer Lett. 233: 297-308.
- 8. Hawkins, J., et al. 2007. Identifying novel peroxisomal proteins. Proteins 69: 606-616.
- 9. Guo, Y., et al. 2007. Underlying mechanisms of pharmacology and toxicity of a novel PPAR agonist revealed using rodent and canine hepatocytes. Toxicol. Sci. 96: 294-309.

CHROMOSOMAL LOCATION

Genetic locus: Ehhadh (mouse) mapping to 16 B1.

RESEARCH USE

For research use only, not for use in diagnostic procedures.

PRODUCT

EHHADH (m): 293T Lysate represents a lysate of mouse EHHADH transfected 293T cells and is provided as 100 μg protein in 200 μl SDS-PAGE buffer.

APPLICATIONS

EHHADH (m): 293T Lysate is suitable as a Western Blotting positive control for mouse reactive EHHADH antibodies. Recommended use: $10-20~\mu l$ per lane

Control 293T Lysate: sc-117752 is available as a Western Blotting negative control lysate derived from non-transfected 293T cells.

STORAGE

Store at -20° C. Repeated freezing and thawing should be minimized. Sample vial should be boiled once prior to use. Non-hazardous. No MSDS required.

PROTOCOLS

See our web site at www.scbt.com for detailed protocols and support products.

Santa Cruz Biotechnology, Inc. 1.800.457.3801 831.457.3800 fax 831.457.3801 **Europe** +00800 4573 8000 49 6221 4503 0 **www.scbt.com**