$G_{\beta 5}$ (m): 293T Lysate: sc-120363

The Power to Question

BACKGROUND

Heterotrimeric G proteins function to relay information from cell surface receptors to intracellular effectors. Each of a very broad range of receptors specifically detects an extracellular stimulus (i.e., a photon, pheromone, odorant, hormone or neurotransmitter), while the effectors (e.g., adenyl cyclase), which act to generate one or more intracellular messengers, are less numerous. Each subunit of the G protein complex is encoded by a member of one of three corresponding gene families $(\alpha,\,\beta,\,\gamma).$ In mammals, there are five different members of the β -subunit family. The β subunits of the G proteins are important regulators of G protein a subunits as well as of certain signal transduction receptors and effectors. In contrast to $G_{\beta\,1-4}$, which are at least 83% homologous, $G_{\beta\,5}$ is only 50% homologous to the other β subunits. Human $G_{\beta\,5}$ is expressed at high levels in brain, pancreas, kidney, and heart.

REFERENCES

- Blatt, C., Eversole-Cire, P., Cohn, V.H., Zollman, S., Fournier, R.E., Mohandas, L.T., Nesbitt, M., Lugo, T., Jones, D.T., Reed, R.R., et al. 1988. Chromosomal localization of genes encoding guanine nucleotide-binding protein subunits in mouse and human. Proc. Natl. Acad. Sci. USA 85: 7642-7646.
- 2. Gautam, N., Northup, J., Tamir, H. and Simon, M.I. 1990. G protein diversity is increased by associations with a variety of γ subunits. Proc. Natl. Acad. Sci. USA 87: 7973-7977.
- Simon, M.I., Strathmann, M.P. and Gautam, N. 1991. Diversity of G proteins in signal transduction. Science 252: 802-808.
- 4. von Weizsäcker, E., Strathmann, M.P. and Simon, M.I. 1992. Diversity among the β subunits of hetero-trimeric GTP-binding proteins: characterization of a novel β -subunit cDNA. Biochem. Biophys. Res. Commun. 183: 350-356.
- 5. Kleuss, C., Scherübl, H., Hescheler, J., Schultz, G. and Wittig, B. 1992. Different β subunits determine G protein interaction with transmembrane receptors. Nature 358: 424-426.
- 6. Blank, J.L., Brattain, K.A. and Exton, J.H. 1992. Activation of cytosolic phosphoinositide phospholipase C by G protein $\beta\gamma$ subunits. J. Biol. Chem. 267: 23069-23075.
- 7. Hurowitz, E.H., Melnyk, J.M., Chen, Y.J., Kouros-Mehr, H., Simon, M.I. and Shizuya, H. 2000. Genomic characterization of the human hetero-trimeric G protein α , β and γ subunit genes. DNA Res. 7: 111-120.

CHROMOSOMAL LOCATION

Genetic locus: Gnb5 (mouse) mapping to 9 D

PRODUCT

 $G_{\beta,5}$ (m): 293T Lysate represents a lysate of mouse $G_{\beta,5}$ transfected 293T cells and is provided as 100 μg protein in 200 μl SDS-PAGE buffer.

STORAGE

Store at -20° C. Repeated freezing and thawing should be minimized. Sample vial should be boiled once prior to use. Non-hazardous. No MSDS required.

APPLICATIONS

 $G_{\beta\,5}$ (m): 293T Lysate is suitable as a Western Blotting positive control for mouse reactive $G_{\beta\,5}$ antibodies. Recommended use: 10-20 μ l per lane.

Control 293T Lysate: sc-117752 is available as a Western Blotting negative control lysate derived from non-transfected 293T cells.

RESEARCH USE

For research use only, not for use in diagnostic procedures.

PROTOCOLS

See our web site at www.scbt.com for detailed protocols and support products.

Santa Cruz Biotechnology, Inc. 1.800.457.3801 831.457.3800 fax 831.457.3801 Europe +00800 4573 8000 49 6221 4503 0 www.scbt.com