KMO (m): 293T Lysate: sc-121247

The Power to Question

BACKGROUND

KMO (kynurenine 3-monooxygenase), also known as kynurenine 3-hydroxylase, is a 486 amino acid multi-pass membrane protein that belongs to the aromaticring hydroxylase family and the KMO subfamily. Existing as three alternatively spliced isoforms, KMO catalyzes the hydroxylation of L-kynurenine (L-Kyn) to form 3-hydroxy-L-kynurenine (L-30HKyn). KMO is required for synthesis of quinolinic acid, a neurotoxic NMDA receptor antagonist and potential endogenous inhibitor of NMDA receptor signaling in axonal targeting, synaptogenesis and apoptosis during brain development. Quinolinic acid may also affect NMDA receptor signaling in pancreatic β cells, osteoblasts, myocardial cells and the gastrointestinal tract. While it is detectable in kidney, KMO is expressed at high levels in placenta and liver. The gene that encodes KMO consists of approximately 63,511 bases and maps to human chromosome 1q43.

REFERENCES

- Alberati-Giani, D., Cesura, A.M., Broger, C., Warren, W.D., Rover, S. and Malherbe, P. 1997. Cloning and functional expression of human kynurenine 3-monooxygenase. FEBS Lett. 410: 407-412.
- 2. Online Mendelian Inheritance in Man, OMIM™. 1999. Johns Hopkins University, Baltimore, MD. MIM Number: 603538. World Wide Web URL: http://www.ncbi.nlm.nih.gov/omim/
- 3. Breton, J., Avanzi, N., Magagnin, S., Covini, N., Magistrelli, G., Cozzi, L. and Isacchi, A. 2000. Functional characterization and mechanism of action of recombinant human kynurenine 3-hydroxylase. Eur. J. Biochem. 267: 1092-1099
- Stone, T.W. and Darlington, L.G. 2002. Endogenous kynurenines as targets for drug discovery and development. Nat. Rev. Drug Discov. 1: 609-620.
- Ligam, P., Manuelpillai, U., Wallace, E.M. and Walker, D. 2005. Localisation
 of indoleamine 2,3-dioxygenase and kynurenine hydroxylase in the human
 placenta and decidua: implications for role of the kynurenine pathway in
 pregnancy. Placenta 26: 498-504.
- Aoyama, N., Takahashi, N., Saito, S., Maeno, N., Ishihara, R., Ji, X., Miura, H., Ikeda, M., Suzuki, T., Kitajima, T., Yamanouchi, Y., Kinoshita, Y., Yoshida, K., Iwata, N., Inada, T. and Ozaki, N. 2006. Association study between kynurenine 3-monooxygenase gene and schizophrenia in the Japanese population. Genes Brain Behav. 5: 364-368.
- 7. Wonodi, I., Stine, O.C., Sathyasaikumar, K.V., Roberts, R.C., Mitchell, B.D., Hong, L.E., Kajii, Y., Thaker, G.K. and Schwarcz, R. 2011. Downregulated kynurenine 3-monooxygenase gene expression and enzyme activity in schizophrenia and genetic association with schizophrenia endophenotypes. Arch. Gen. Psychiatry 68: 665-674.
- Holtze, M., Saetre, P., Erhardt, S., Schwieler, L., Werge, T., Hansen, T., Nielsen, J., Djurovic, S., Melle, I., Andreassen, O.A., Hall, H., Terenius, L., Agartz, I., Engberg, G., Jonsson, E.G. and Schalling, M. 2011. Kynurenine 3-monooxygenase (KMO) polymorphisms in schizophrenia: an association study. Schizophr. Res. 127: 270-272.

CHROMOSOMAL LOCATION

Genetic locus: Kmo (mouse) mapping to 1 H4.

PRODUCT

KMO (m): 293T Lysate represents a lysate of mouse KMO transfected 293T cells and is provided as 100 µg protein in 200 µl SDS-PAGE buffer.

APPLICATIONS

KMO (m): 293T Lysate is suitable as a Western Blotting positive control for mouse reactive KMO antibodies. Recommended use: 10-20 μ l per lane.

Control 293T Lysate: sc-117752 is available as a Western Blotting negative control lysate derived from non-transfected 293T cells.

STORAGE

Store at -20° C. Repeated freezing and thawing should be minimized. Sample vial should be boiled once prior to use. Non-hazardous. No MSDS required.

RESEARCH USE

For research use only, not for use in diagnostic procedures.

PROTOCOLS

See our web site at www.scbt.com for detailed protocols and support products.

Santa Cruz Biotechnology, Inc. 1.800.457.3801 831.457.3800 fax 831.457.3801 Europe +00800 4573 8000 49 6221 4503 0 www.scbt.com