Mpi (m): 293T Lysate: sc-121729

The Power to Question

BACKGROUND

Mpi (mannose phosphate isomerase), also known as PMI (phosphomannose isomerase) or PMI1, is a 423 amino acid zinc metalloenzyme belonging to the mannose-6-phosphate isomerase type 1 family, and is expressed in all tissues, more abundantly in heart, brain and skeletal muscle. A steady supply of D-mannose derivatives, which are required for most glycosylation reactions, is maintained by Mpi. Localized to the cytoplasm, Mpi utilizes zinc as a cofactor and catalyzes the interconversion of fructose-6-phosphate and mannose-6-phosphate. Mutations in the gene encoding Mpi lead to congenital disorder of glycosylation type 1B (CDG1B), also designated carbohydrate-deficient glycoprotein syndrome type lb (CDGS1B), which is characterized by protein-losing enteropathy. Congenital disorders of glycosylation are metabolic deficiencies in glycoprotein biosynthesis that usually results in severe mental and psychomotor retardation.

REFERENCES

- Proudfoot, A.E., et al. 1996. In vivo and in vitro folding of a recombinant metalloenzyme, phosphomannose isomerase. Biochem. J. 318: 437-442.
- Jaeken, J., et al. 1998. Phosphomannose isomerase deficiency: a carbohydrate-deficient glycoprotein syndrome with hepatic-intestinal presentation. Am. J. Hum. Genet. 62: 1535-1539.
- Niehues, R., et al. 1998. Carbohydrate-deficient glycoprotein syndrome type lb. Phosphomannose isomerase deficiency and mannose therapy. J. Clin. Invest. 101: 1414-1420.
- Schollen, E., et al. 2000. Genomic organization of the human phosphomannose isomerase (MPI) gene and mutation analysis in patients with congenital disorders of glycosylation type lb (CDG-lb). Hum. Mutat. 16: 247-252.
- de Lonlay, P., et al. 2001. A broad spectrum of clinical presentations in congenital disorders of glycosylation I: a series of 26 cases. J. Med. Genet. 38: 14-19.
- Schollen, E., et al. 2002. DHPLC analysis as a platform for molecular diagnosis of congenital disorders of glycosylation (CDG). Eur. J. Hum. Genet. 10: 643-648.
- Vuillaumier-Barrot, S., et al. 2002. Protein losing enteropathy-hepatic fibrosis syndrome in Saguenay-Lac St-Jean, Quebec is a congenital disorder of glycosylation type lb. J. Med. Genet. 39: 849-851.
- 8. de Lonlay, P. and Seta, N. 2009. The clinical spectrum of phosphomannose isomerase deficiency, with an evaluation of mannose treatment for CDG-lb. Biochim. Biophys. Acta 1792: 841-843.
- Higashidani, A., et al. 2009. Exogenous mannose does not raise steady state mannose-6-phosphate pools of normal or N-glycosylation-deficient human fibroblasts. Mol. Genet. Metab. 96: 268-272.

CHROMOSOMAL LOCATION

Genetic locus: Mpi (mouse) mapping to 9 B.

PRODUCT

Mpi (m): 293T Lysate represents a lysate of mouse Mpi transfected 293T cells and is provided as 100 μ g protein in 200 μ l SDS-PAGE buffer.

APPLICATIONS

Mpi (m): 293T Lysate is suitable as a Western Blotting positive control for mouse reactive Mpi antibodies. Recommended use: 10-20 µl per lane.

Control 293T Lysate: sc-117752 is available as a Western Blotting negative control lysate derived from non-transfected 293T cells.

STORAGE

Store at -20° C. Repeated freezing and thawing should be minimized. Sample vial should be boiled once prior to use. Non-hazardous. No MSDS required.

RESEARCH USE

For research use only, not for use in diagnostic procedures.

PROTOCOLS

See our web site at www.scbt.com for detailed protocols and support products.

Santa Cruz Biotechnology, Inc. 1.800.457.3801 831.457.3800 fax 831.457.3801 **Europe** +00800 4573 8000 49 6221 4503 0 **www.scbt.com**