PEPCK-M (m): 293T Lysate: sc-122487

The Power to Question

BACKGROUND

Normal adjustment to changes in blood glucose levels depends on Insulin signaling as well as enzymes involved in the regulation of gluconeogenesis. Pathological changes to this process are central to the type 2 diabetes phenotype. Phosphoenolpyruvate carboxykinase (PEPCK) plays an important role in this process by stimulating hepatic glucose production. PEPCK expression increases in response to glucagon and glucocorticoids, while Insulin suppresses expression. Modulation of the signals governing PEPCK levels present a potential therapeutic approach to the treatment of Insulin resistance and consequently obesity. The cytosolic form of PEPCK, known as PEPCK-C, and the mitochondrial form, known as PEPCK-M, are encoded by two different nuclear genes in mouse, human and chicken.

REFERENCES

- 1. Beale, E.G., et al. 1986. Insulin decreases H4IIE cell PEPCK mRNA by a mechanism that does not involve cAMP. Diabetes 35: 546-549.
- O'Brien, R.M., et al. 1990. Identification of a sequence in the PEPCK gene that mediates a negative effect of Insulin on transcription. Science 249: 533-537.
- Wang, Y. and Taub, M. 1991. Insulin and other regulatory factors modulate the growth and the phosphoenolpyruvate carboxykinase (PEPCK) activity of primary rabbit kidney proximal tubule cells in serum free medium. J. Cell. Physiol. 147: 374-382.
- 4. Barthel, A., et al. 2003. Novel concepts in Insulin regulation of hepatic gluconeogenesis. Am. J. Physiol. Endocrinol. Metab. 285: 685-692.
- 5. Horikawa, Y., et al. 2003. Identification of a novel variant in the phosphoenolpyruvate carboxykinase gene promoter in Japanese patients with type 2 diabetes. Horm. Metab. Res. 35: 308-312.
- Barthel, A., et al. 2003. Novel aspects in the mechanisms of steroid diabetes and the regulation of hepatic glucose production by Insulin and steroids. Med. Klin. 98: 283-286.
- 7. Shklyaev, S., et al. 2003. Sustained peripheral expression of transgene adiponectin offsets the development of diet-induced obesity in rats. Proc. Natl. Acad. Sci. USA 100: 14217-14222.
- 8. Inoue, E. and Yamauchi, J. 2006. AMP-activated protein kinase regulates PEPCK gene expression by direct phosphorylation of a novel zinc finger transcription factor. Biochem. Biophys. Res. Commun. 351: 793-799.
- Sullivan, S.M. and Holyoak, T. 2007. Structures of rat cytosolic PEPCK: insight into the mechanism of phosphorylation and decarboxylation of oxaloacetic acid. Biochemistry 46: 10078-10088.

CHROMOSOMAL LOCATION

Genetic locus: Pck2 (mouse) mapping to 14 C3.

PRODUCT

PEPCK-M (m): 293T Lysate represents a lysate of mouse PEPCK-M transfected 293T cells and is provided as 100 μg protein in 200 μl SDS-PAGE buffer.

APPLICATIONS

PEPCK-M (m): 293T Lysate is suitable as a Western Blotting positive control for mouse reactive PEPCK-M antibodies. Recommended use: 10-20 μ l per lane

Control 293T Lysate: sc-117752 is available as a Western Blotting negative control lysate derived from non-transfected 293T cells.

STORAGE

Store at 4° C, **DO NOT FREEZE**. Stable for one year from the date of shipment. Non-hazardous. No MSDS required.

RESEARCH USE

For research use only, not for use in diagnostic procedures.

PROTOCOLS

See our web site at www.scbt.com for detailed protocols and support products.

Santa Cruz Biotechnology, Inc. 1.800.457.3801 831.457.3801 Fax 831.457.3801 Europe +00800 4573 8000 49 6221 4503 0 www.scbt.com