TGFβ2 (m2): 293T Lysate: sc-124019

The Power to Question

BACKGROUND

Transforming growth factor betas (TGF β s) were originally discovered due to their ability to promote anchorage-independent growth of rat NRK fibroblasts in the presence of TGF α . It is now realized that TGF β s mediate many cell-cell interactions that occur during embryonic development. Three TGF β s have been identified in mammals. TGF β 1, TGF β 2 and TGF β 3 are each synthesized as precursor proteins that are very similar in that each is cleaved to yield a 112 amino acid polypeptide that remains associated with the latent portion of the molecules. Biologically active TGF β requires dimerization of the monomers (usually homodimers) and release of the latent peptide portion. Overall, the mature region of the TGF β 3 protein has approximately 80% identity to the mature region of both TGF β 1 and TGF β 2. However, the NH $_2$ terminals or precursor regions of their molecules share only 27% sequence identity.

REFERENCES

- Todaro, G.J., Fryling, C. and De Larco, J.E. 1980. Transforming growth factors produced by certain human tumor cells: polypeptides that interact with epidermal growth factor receptors. Proc. Natl. Acad. Sci. USA 77: 5258-5262.
- 2. Anzano, M.A., Roberts, A.B., Smith, J.M., Sporn, M.B. and De Larco, J.E. 1983. Sarcoma growth factor from conditioned medium of virally transformed cells is composed of both type α and type β transforming growth factors. Proc. Natl. Acad. Sci. USA 80: 6264-6268.
- 3. Derynck, R., Jarrett, J.A., Chen, E.Y., Eaton, D.H., Bell, J.R., Assoian, R.K., Roberts, A.B., Sporn, M.B. and Goeddel, D.V. 1985. Human transforming growth factor β complementary DNA sequence and expression in normal and transformed cells. Nature 316: 701-705.
- 4. de Martin, R., Haendler, B., Hofer-Warbinek, R., Gaugitsch, H., Wrann, M., Schlusener, H., Seifert, J.M., Bodmer, S., Fontana, A. and Hofer, E. 1987. Complementary DNA for human glioblastoma-derived T cell suppressor factor, a novel member of the transforming growth factor β gene family. EMBO J. 6: 3673-3677.
- 5. ten Dijke, P., Hansen, P., Iwata, K.K., Pieler, C. and Foulkes, J.G. 1988. Identification of another member of the transforming growth factor type β gene family. Proc. Natl. Acad. Sci. USA 85: 4715-4719.
- 6. Wakefield, L.M., Smith, D.M., Broz, S., Jackson, M., Levinson, A.D. and Sporn, M.B. 1989. Recombinant TGF β 1 is synthesized as a two component latent complex that shares some structural features with the native latent TGF β complex. Growth Factors 1: 203-218.
- 7. ten Dijke, P., Thorikay, M., Stewart, A. and Iwata, K.K. 1990. Recombinant expression and purification of transforming growth factor β 3, a potent growth regulator. Growth Factors 593: 36-42.
- Miller, D.A., Pelton, R.W., Derynck, R. and Moses, H.L. 1990. Transforming growth factor β: a family of growth regulatory peptides. Ann. N.Y. Acad. Sci. 593: 208-217.

STORAGE

Store at 4° C, **DO NOT FREEZE**. Stable for one year from the date of shipment. Non-hazardous. No MSDS required.

CHROMOSOMAL LOCATION

Genetic locus: Tgfb2 (mouse) mapping to 1 H5.

PRODUCT

TGF β 2 (m2): 293T Lysate represents a lysate of mouse TGF β 2 transfected 293T cells and is provided as 100 μ g protein in 200 μ l SDS-PAGE buffer.

APPLICATIONS

TGFβ2 (m2): 293T Lysate is suitable as a Western Blotting positive control for mouse reactive TGFβ2 antibodies. Recommended use: 10-20 μ l per lane.

Control 293T Lysate: sc-117752 is available as a Western Blotting negative control lysate derived from non-transfected 293T cells.

RESEARCH USE

For research use only, not for use in diagnostic procedures.

PROTOCOLS

See our web site at www.scbt.com for detailed protocols and support products.

Santa Cruz Biotechnology, Inc. 1.800.457.3801 831.457.3801 Furope +00800 4573 8000 49 6221 4503 0 www.scbt.com