V-ATPase G1 (m): 293T Lysate: sc-126207

The Power to Question

BACKGROUND

Vacuolar-type H+-ATPase (V-ATPase) is a multi-subunit enzyme responsible for acidification of eukaryotic intracellular organelles. V-ATPases pump protons against an electrochemical gradient, while F-ATPases reverse the process, thereby synthesizing ATP. A peripheral V1 domain, which is responsible for ATP hydrolysis, and a integral V0 domain, which is responsible for proton translocation, compose V-ATPase. Nine subunits (A-H) make up the V1 domain and five subunits (a, d, c, c' and c") make up the V0 domain. Like F-ATPase, V-ATPase most likely operates through a rotary mechanism. In yeast, the V-ATPase G subunit is a soluble subunit that shares homology with the F-ATPase G subunit and may be part of a connection stalk between V1 and V0. The G2 isoform of the G subunit associates with the pore-forming a1C-subunit of L-type calcium channel and aids in proper membrane targeting of the calcium channel. The genes encoding the G1 and G2 V-ATPase subunits map to chromosomes 9q33.1 and 6p21.3, respectively.

REFERENCES

- 1. Hunt, I.E. and Bowman, B.J. 1997. The intriguing evolution of the "B" and "G" subunits in F-type and V-type ATPases: isolation of the vma-10 gene from *Neurospora crassa*. J. Bioenerg. Biomembr. 29: 533-540.
- Neville, M.J. and Campbell, R.D. 1999. A new member of the lg superfamily and a V-ATPase G subunit are among the predicted products of novel genes close to the TNF locus in the human MHC. J. Immunol. 162: 4745-4754.
- Gao, T. and Hosey, M.M. 2000. Association of L-type calcium channels with a vacuolar H+-ATPase G2 subunit. Biochem. Biophys. Res. Commun. 277: 611-616.
- Charsky, C.M., Schumann, N.J. and Kane, P.M. 2000. Mutational analysis of subunit G (Vma10p) of the yeast vacuolar H+-ATPase. J. Biol. Chem. 275: 37232-37239.
- 5. Nishi, T. and Forgac, M. 2002. The vacuolar H+-ATPases—nature's most versatile proton pumps. Nat. Rev. Mol. Cell Biol. 3: 94-103.
- 6. Smith, A.N., Borthwick, K.J. and Karet, F.E. 2002. Molecular cloning and characterization of novel tissue-specific isoforms of the human vacuolar H+-ATPase C, G and d subunits, and their evaluation in autosomal recessive distal renal tubular acidosis. Gene 297: 169-177.
- 7. Jones, R.P., Durose, L.J., Findlay, J.B. and Harrison, M.A. 2005. Defined sites of interaction between subunits E (Vma4p), C (Vma5p), and G (Vma10p) within the stator structure of the vacuolar H+-ATPase. Biochemistry 44: 3933-3941. Erratum in 44: 11924.
- 8. Hanitzsch, M., Schnitzer, D., Seidel, T., Golldack, D. and Dietz, K.J. 2007. Transcript level regulation of the vacuolar H+-ATPase subunit isoforms VHA-a, VHA-E and VHA-G in *Arabidopsis thaliana*. Mol. Membr. Biol. 24: 507-518.

CHROMOSOMAL LOCATION

Genetic locus: Atp6v1g2 (mouse) mapping to 17 B2.

RESEARCH USE

For research use only, not for use in diagnostic procedures.

PRODUCT

V-ATPase G1 (m): 293T Lysate represents a lysate of mouse V-ATPase G1 transfected 293T cells and is provided as 100 μ g protein in 200 μ l SDS-PAGE buffer.

APPLICATIONS

V-ATPase G1 (m): 293T Lysate is suitable as a Western Blotting positive control for mouse reactive V-ATPase G1 antibodies. Recommended use: 10-20 μ l per lane.

Control 293T Lysate: sc-117752 is available as a Western Blotting negative control lysate derived from non-transfected 293T cells.

STORAGE

Store at -20° C. Repeated freezing and thawing should be minimized. Sample vial should be boiled once prior to use. Non-hazardous. No MSDS required.

PROTOCOLS

See our web site at www.scbt.com for detailed protocols and support products.

Santa Cruz Biotechnology, Inc. 1.800.457.3801 831.457.3801 Fax 831.457.3801 Europe +00800 4573 8000 49 6221 4503 0 www.scbt.com