μ-crystallin (m): 293T Lysate: sc-127847

The Power to Question

BACKGROUND

Crystallins are divided into two classes: taxon-specific, or enzyme, and ubiquitous. The ubiquitous crystallins constitute the major proteins of the vertebrate eye lens, where they maintain the transparency and refractive index of the lens. The taxon-specific crystallins, also designated phylogenetically-restricted crystallins, include λ -, μ -, and ζ -crystallin, which all share homology to various enzymes. λ -crystallin is best described in rabbit, where it shares homology with L-3-hydroxyacyl-CoA dehydrogenase from porcine. The human μ -crystallin gene maps to chromosome 16p13, and encodes a protein that is expressed in neural tissue, muscle, and kidney. Unlike other crystallins, μ -crystallin does not perform a structural role in lens tissue, but rather it binds NADPH and thyroid hormone, which indicates that it may have other regulatory or developmental functions. ζ -crystallin/quinone reductase is present at low levels in human lens tissue. It has NADPH-dependent quinone reductase activity distinct from other known quinone reductases, and may play a role as a pH response element-binding protein.

REFERENCES

- Mulders, J.W., et al. 1988. λ-crystallin, a major rabbit lens protein, is related to hydroxyacyl-coenzyme A dehydrogenases. J. Biol. Chem. 263: 15462-15466.
- 2. Chen, H., et al. 1992. Localization of the human gene for μ -crystallin to chromosome 16p. Genomics 14: 1115-1116.
- 3. Slingsby, C., et al. 1999. Structure of the crystallins. Eye 13: 395-402.
- Tang, A., et al. 2001. Identification of ζ-crystallin/NADPH: quinone reductase as a renal glutaminase mRNA pH response element-binding protein. J. Biol. Chem. 276: 21375-21380.
- 5. Horwitz, J. 2003. α -crystallin. Exp. Eye Res. 76: 145-153.
- Bhat, S.P. 2004. Transparency and non-refractive functions of crystallins a proposal. Exp. Eye Res. 79: 809-816.
- 7. Paulin, D., et al. 2004. Desminopathies in muscle disease. J. Pathol. 204: 418-427.
- 8. LocusLink Report (LocusID: 1428). http://www.ncbi.nlm.nih.gov/LocusLink/

CHROMOSOMAL LOCATION

Genetic locus: Crym (mouse) mapping to 7 F2.

PRODUCT

 μ -crystallin (m): 293T Lysate represents a lysate of mouse μ -crystallin transfected 293T cells and is provided as 100 μ g protein in 200 μ l SDS-PAGE buffer.

STORAGE

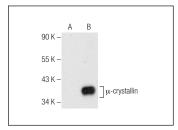
Store at -20° C. Repeated freezing and thawing should be minimized. Sample vial should be boiled once prior to use. Non-hazardous. No MSDS required.

PROTOCOLS

See our web site at www.scbt.com for detailed protocols and support products.

APPLICATIONS

 $\mu\text{-crystallin}$ (m): 293T Lysate is suitable as a Western Blotting positive control for mouse reactive $\mu\text{-crystallin}$ antibodies. Recommended use: 10-20 μl per lane.


Control 293T Lysate: sc-117752 is available as a Western Blotting negative control lysate derived from non-transfected 293T cells.

 $\mu\text{-crystallin}$ (F-11): sc-376687 is recommended as a positive control antibody for Western Blot analysis of enhanced mouse $\mu\text{-crystallin}$ expression in $\mu\text{-crystallin}$ transfected 293T cells (starting dilution 1:100, dilution range 1:100-1:1,000).

RECOMMENDED SUPPORT REAGENTS

To ensure optimal results, the following support reagents are recommended: 1) Western Blotting: use m-lgG κ BP-HRP: sc-516102 or m-lgG κ BP-HRP (Cruz Marker): sc-516102-CM (dilution range: 1:1000-1:10000), Cruz MarkerTM Molecular Weight Standards: sc-2035, UltraCruz® Blocking Reagent: sc-516214 and Western Blotting Luminol Reagent: sc-2048.

DATA

 μ -crystallin (F-11): sc-376687. Western blot analysis of μ -crystallin expression in non-transfected: sc-117752 (A) and mouse μ -crystallin transfected: sc-127847 (B) 293T whole cell Ivsates

RESEARCH USE

For research use only, not for use in diagnostic procedures.