βB1-crystallin (h2): 293T Lysate: sc-128077

The Power to Question

BACKGROUND

Crystallins are the major proteins of the vertebrate eye lens, where they maintain the transparency and refractive index of the lens. Crystallins are divided into α , β , and γ families, and the β and γ -crystallins also comprise a superfamily. Crystallins usually contain seven distinctive protein regions, including four homologous motifs, a connecting peptide, and N- and C-terminal extensions. β -crystallins constitute the major lens structural proteins, and they associate into dimers, tetramers and higher order aggregates. The β -crystallin subfamily is composed of several gene products, including β A1-, β A2-, β A3-, β A4-, β B1-, β B2- and β B3-crystallin. The β A1- and β A3-crystallin proteins are encoded by a single mRNA. They differ by only 17 amino acids, and β A1-crystallin is generated by use of an alternate translation initiation site.

REFERENCES

- 1. Hope, J.N., Chen, H.C. and Hejtmancik, J.F. 1994. βA3/A1-crystallin association: role of the N-terminal arm. Protein Eng. 7: 445-451.
- Hejtmancik, J.F., Wingfield, P.T., Chambers, C., Russell, P., Chen, H.C., Sergeev, Y.V. and Hope, J.N. 1997. Association properties of βB2- and βA3-crystallin: ability to form dimers. Protein Eng. 10: 1347-1352.
- 3. Werten, P.J., Stege, G.J. and de Jong, W.W. 1999. The short 5' untranslated region of the β A3/A1-crystallin mRNA is responsible for leaky ribosomal scanning. Mol. Biol. Rep. 26: 201-205.
- 4. Slingsby, C. and Clout, N.J. 1999. Structure of the crystallins. Eye 13: 395-402.
- 5. Horwitz, J. 2003. α-crystallin. Exp. Eye Res. 76: 145-153.
- Hejtmancik, J.F., Wingfield, P.T. and Sergeev, Y.V. 2004. β-crystallin association. Exp. Eye Res. 79: 377-383.
- Bhat, S.P. 2004. Transparency and non-refractive functions of crystallins a proposal. Exp. Eye Res. 79: 809-816.

CHROMOSOMAL LOCATION

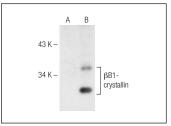
Genetic locus: CRYBB1 (human) mapping to 22q12.1.

PRODUCT

 $\beta B1$ -crystallin (h2): 293T Lysate represents a lysate of human $\beta B1$ -crystallin transfected 293T cells and is provided as 100 μg protein in 200 μl SDS-PAGE buffer.

APPLICATIONS

 $\beta B1$ -crystallin (h2): 293T Lysate is suitable as a Western Blotting positive control for human reactive $\beta B1$ -crystallin antibodies. Recommended use: 10-20 μl per lane.


Control 293T Lysate: sc-117752 is available as a Western Blotting negative control lysate derived from non-transfected 293T cells.

 $\beta B1$ -crystallin (A-8): sc-374496 is recommended as a positive control antibody for Western Blot analysis of enhanced human $\beta B1$ -crystallin expression in $\beta B1$ -crystallin transfected 293T cells (starting dilution 1:100, dilution range 1:100-1:1,000).

RECOMMENDED SUPPORT REAGENTS

To ensure optimal results, the following support reagents are recommended: 1) Western Blotting: use m-lgG κ BP-HRP: sc-516102 or m-lgG κ BP-HRP (Cruz Marker): sc-516102-CM (dilution range: 1:1000-1:10000), Cruz MarkerTM Molecular Weight Standards: sc-2035, UltraCruz® Blocking Reagent: sc-516214 and Western Blotting Luminol Reagent: sc-2048.

DATA

βB1-crystallin (A-8): sc-374496. Western blot analysis of βB1-crystallin expression in non-transfected: sc-117752 (A) and human βB1-crystallin transfected: sc-128077 (B) 293T whole cell lysates.

STORAGE

Store at -20° C. Repeated freezing and thawing should be minimized. Sample vial should be boiled once prior to use. Non-hazardous. No MSDS required.

RESEARCH USE

For research use only, not for use in diagnostic procedures.

PROTOCOLS

See our web site at www.scbt.com for detailed protocols and support products.