MAD1 (D-6): sc-137026 The Power to Question ### **BACKGROUND** Cell cycle progression is subject to arrest at the mitotic spindle assembly checkpoint in response to incorrect spindle fiber assembly. MAD1 and MAD2 (for mitotic arrest-deficient 1 and 2) are components of the mitotic spindle checkpoint. Incorrect spindle assembly in normal cells leads to mitotic arrest. MAD1 prevents the onset of anaphase until all chromosomes are aligned correctly at the metaphase plate and is crucial for anchoring MAD2L1 to the nuclear periphery. It also plays an important role in septum positioning. MAD1 can form a homo-dimer, but may also form a heterodimer with MAD2 to form the tetrameric MAD1L1-MAD2L1 core complex. MAD1 localizes primarily to the nucleus, but during mitosis, it moves from a nuclear distribution to the centrosome, to the spindle midzone and then on to the midbody. MAD1 activity is induced by BUB1 and the protein is hyperphosphorylated after mitotic spindle damage and/or in late S through M phase. Defects in the gene encoding for MAD1, MAD1L1, play a major role in the development and progression of various cancer types. ### **REFERENCES** - 1. Jones, N. 1990. Transcriptional regulation by dimerization: two sides to an incestuous relationship. Cell 61: 9-11. - Prendergast, G.C., et al. 1991. Association of Myn, the murine homolog of Max, with c-Myc stimulates methylation-sensitive DNA binding and Ras cotransformation. Cell 65: 395-407. - 3. Dang, C.V., et al. 1991. Intracellular leucine zipper interactions suggest c-Myc hetero-oligomerization. Mol. Cell. Biol. 11: 954-962. - 4. Blackwood, E.M., et al. 1991. Max: a helix-loop-helix zipper protein that forms a sequence-specific DNA-binding complex with Myc. Science 251: 1211-1217. - Amati, B., et al. 1992. Oncogenic activity of the c-Myc protein requires dimerization with Max. Cell 72: 233-245. #### **CHROMOSOMAL LOCATION** Genetic locus: MAD1L1 (human) mapping to 7p22.3; Mad1l1 (mouse) mapping to 5 G2. ## SOURCE MAD1 (D-6) is a mouse monoclonal antibody raised against amino acids 241-540 mapping within an internal region of MAD1 of mouse origin. ## **PRODUCT** Each vial contains 200 μg lgG_{2b} kappa light chain in 1.0 ml of PBS with < 0.1% sodium azide and 0.1% gelatin. #### **STORAGE** Store at 4° C, **DO NOT FREEZE**. Stable for one year from the date of shipment. Non-hazardous. No MSDS required. ## **RESEARCH USE** For research use only, not for use in diagnostic procedures. ## **APPLICATIONS** MAD1 (D-6) is recommended for detection of MAD1 of mouse, rat and human origin by Western Blotting (starting dilution 1:100, dilution range 1:100-1:1000), immunoprecipitation [1-2 μ g per 100-500 μ g of total protein (1 ml of cell lysate)], immunofluorescence (starting dilution 1:50, dilution range 1:50-1:500) and solid phase ELISA (starting dilution 1:30, dilution range 1:30-1:3000). Suitable for use as control antibody for MAD1 siRNA (h): sc-62577, MAD1 siRNA (m): sc-62578, MAD1 shRNA Plasmid (h): sc-62577-SH, MAD1 shRNA Plasmid (m): sc-62578-SH, MAD1 shRNA (h) Lentiviral Particles: sc-62577-V and MAD1 shRNA (m) Lentiviral Particles: sc-62578-V. Molecular Weight of MAD1: 90 kDa. Positive Controls: MAD1 (m): 293T Lysate: sc-121481, SK-N-SH cell lysate: sc-2410 or EOC 20 whole cell lysate: sc-364187. ## **RECOMMENDED SUPPORT REAGENTS** To ensure optimal results, the following support reagents are recommended: 1) Western Blotting: use m-lgG κ BP-HRP: sc-516102 or m-lgG κ BP-HRP (Cruz Marker): sc-516102-CM (dilution range: 1:1000-1:10000), Cruz MarkerTM Molecular Weight Standards: sc-2035, UltraCruz* Blocking Reagent: sc-516214 and Western Blotting Luminol Reagent: sc-2048. 2) Immunoprecipitation: use Protein A/G PLUS-Agarose: sc-2003 (0.5 ml agarose/2.0 ml). 3) Immunofluorescence: use m-lgG κ BP-FITC: sc-516140 or m-lgG κ BP-PE: sc-516141 (dilution range: 1:50-1:200) with UltraCruz* Mounting Medium: sc-24941 or UltraCruz* Hard-set Mounting Medium: sc-359850. ## DATA MAD1 (D-6): sc-137026. Western blot analysis of MAD1 expression in non-transfected: sc-117752 (**A**) and mouse MAD1 transfected: sc-121481 (**B**) 2931 whole cell byeater ## **SELECT PRODUCT CITATIONS** d'Alcontres, M.S., et al. 2014. Topollα prevents telomere fragility and formation of ultra thin DNA bridges during mitosis through TRF1-dependent binding to telomeres. Cell Cycle 13: 1463-1481. See **MAD1 (D-1): sc-166312** for MAD1 antibody conjugates, including AC, HRP, FITC, PE, and Alexa Fluor* 488, 546, 594, 647, 680 and 790.