ACADS siRNA (m): sc-140792 The Power to Question ## **BACKGROUND** ACADS (acyl-Coenzyme A dehydrogenase, C-2 to C-3 short chain), also known as SCAD or ACAD3, is a 412 amino acid homotetrameric mitochondrial flavoprotein that belongs to the acyl-CoA dehydrogenase family. ACADS catalyzes the rate-limiting step of the mitochondrial fatty acid β -oxidation pathway. Mutations of ACADS have been associated with fatty acid oxidation defects and metabolic diseases such as short-chain acyl-CoA dehydrogenase deficiency (SCAD deficiency), an autosomal recessive disorder resulting in acute acidosis and muscle weakness in infants and lipid-storage myopathy in adults. SCADS leads to the accumulation of butyrylcarnitine and ethylmalonic acid in blood and urine. ACADS contains four FAD domains. ## **REFERENCES** - 1. Corydon, M.J., et al. 1997. Structural organization of the human short-chain acyl-CoA dehydrogenase gene. Mamm. Genome 8: 922-926. - Tafti, M., et al. 2003. Deficiency in short-chain fatty acid β-oxidation affects theta oscillations during sleep. Nat. Genet. 34: 320-325. - Nasser, I., et al. 2004. Thermal unfolding of medium-chain acyl-CoA dehydrogenase and iso(3)valeryl-CoA dehydrogenase: study of the effect of genetic defects on enzyme stability. Biochim. Biophys. Acta 1690: 22-32. - 4. Ensenauer, R., et al. 2005. Human acyl-CoA dehydrogenase-9 plays a novel role in the mitochondrial β -oxidation of unsaturated fatty acids. J. Biol. Chem. 280: 32309-32316. - Nagpal, A., et al. 2006. Crystal structures of nitroalkane oxidase: insights into the reaction mechanism from a covalent complex of the flavoenzyme trapped during turnover. Biochemistry 45: 1138-1150. - van Maldegem, B.T., et al. 2006. Clinical, biochemical, and genetic heterogeneity in short-chain acyl-coenzyme A dehydrogenase deficiency. JAMA 296: 943-952. - McAndrew, R.P., et al. 2008. Structural basis for substrate fatty acyl chain specificity: crystal structure of human very-long-chain acyl-CoA dehydrogenase. J. Biol. Chem. 283: 9435-9443. - Tein, I., et al. 2008. Short-chain acyl-CoA dehydrogenase gene mutation (c.319C>T) presents with clinical heterogeneity and is candidate founder mutation in individuals of Ashkenazi Jewish origin. Mol. Genet. Metab. 93: 179-189. # CHROMOSOMAL LOCATION Genetic locus: Acads (mouse) mapping to 5 F. # **PRODUCT** ACADS siRNA (m) is a target-specific 19-25 nt siRNA designed to knock down gene expression. Each vial contains 3.3 nmol of lyophilized siRNA, sufficient for a 10 μ M solution once resuspended using protocol below. Suitable for 50-100 transfections. Also see ACADS shRNA Plasmid (m): sc-140792-SH and ACADS shRNA (m) Lentiviral Particles: sc-140792-V as alternate gene silencing products. #### STORAGE AND RESUSPENSION Store lyophilized siRNA duplex at -20° C with desiccant. Stable for at least one year from the date of shipment. Once resuspended, store at -20° C, avoid contact with RNAses and repeated freeze thaw cycles. Resuspend lyophilized siRNA duplex in 330 μ l of the RNAse-free water provided. Resuspension of the siRNA duplex in 330 μ l of RNAse-free water makes a 10 μ M solution in a 10 μ M Tris-HCl, pH 8.0, 20 mM NaCl, 1 mM EDTA buffered solution. ## **APPLICATIONS** ACADS siRNA (m) is recommended for the inhibition of ACADS expression in mouse cells. #### **SUPPORT REAGENTS** For optimal siRNA transfection efficiency, Santa Cruz Biotechnology's siRNA Transfection Reagent: sc-29528 (0.3 ml), siRNA Transfection Medium: sc-36868 (20 ml) and siRNA Dilution Buffer: sc-29527 (1.5 ml) are recommended. Control siRNAs or Fluorescein Conjugated Control siRNAs are available as 10 μ M in 66 μ l. Each contain a scrambled sequence that will not lead to the specific degradation of any known cellular mRNA. Fluorescein Conjugated Control siRNAs include: sc-36869, sc-44239, sc-44240 and sc-44241. Control siRNAs include: sc-37007, sc-44230, sc-44231, sc-44232, sc-44234, sc-44235, sc-44236, sc-44237 and sc-44238. ## **GENE EXPRESSION MONITORING** ACADS (G-10): sc-365953 is recommended as a control antibody for monitoring of ACADS gene expression knockdown by Western Blotting (starting dilution 1:200, dilution range 1:100-1:1000) or immunofluorescence (starting dilution 1:50, dilution range 1:50-1:500). To ensure optimal results, the following support reagents are recommended: 1) Western Blotting: use m-lgG κ BP-HRP: sc-516102 or m-lgG κ BP-HRP (Cruz Marker): sc-516102-CM (dilution range: 1:1000-1:10000), Cruz MarkerTM Molecular Weight Standards: sc-2035, UltraCruz[®] Blocking Reagent: sc-516214 and Western Blotting Luminol Reagent: sc-2048. 2) Immunofluorescence: use m-lgG κ BP-FITC: sc-516140 or m-lgG κ BP-PE: sc-516141 (dilution range: 1:50-1:200) with UltraCruz[®] Mounting Medium: sc-24941 or UltraCruz[®] Hard-set Mounting Medium: sc-359850. # **RT-PCR REAGENTS** Semi-quantitative RT-PCR may be performed to monitor ACADS gene expression knockdown using RT-PCR Primer: ACADS (m)-PR: sc-140792-PR (20 μ l). Annealing temperature for the primers should be 55-60° C and the extension temperature should be 68-72° C. #### **RESEARCH USE** For research use only, not for use in diagnostic procedures. ## **PROTOCOLS** See our web site at www.scbt.com for detailed protocols and support products. **Santa Cruz Biotechnology, Inc.** 1.800.457.3801 831.457.3801 **Europe** +00800 4573 8000 49 6221 4503 0 **www.scbt.com**