SOD-2 siRNA (bovine): sc-156006

The Power to Question

BACKGROUND

The superoxide dismutase family is composed of three metalloenzymes (SOD-1, SOD-2 and SOD-3) that catalyze the oxido-reduction of reactive oxygen species (ROS) such as superoxide anion. The SOD-2 precursor is a 222 amino acid protein that is encoded by nuclear chromatin, synthesized in the cytosol and imported posttranslationally into the mitochondrial matrix. Unlike SOD-1, which is a homodimeric cytosolic Cu-Zn enzyme, SOD-2 is a homotetrameric manganese enzyme (also known as MnSOD) that functions in the mitochondrion. ROS are implicated in a wide range of degenerative processes, including Alzheimer's disease, Parkinson's disease and ischemic heart disease. Homozygous mutant mice, which lack SOD-2, exhibit dilated cardiomyopathy, accumulation of lipid in liver and skeletal muscle, metabolic acidosis, oxidative DNA damage and respiratory chain deficiencies in heart and skeletal muscle. Polymorphisms in the SOD-2 gene have also been implicated in nonfamilial, idiopathic, dilated cardiomyopathy in humans.

REFERENCES

- Wispe, J.R., et al. 1989. Synthesis and processing of the precursor for human mangano-superoxide dismutase. Biochem. Biophys. Acta 994: 30-36.
- Nishi, H., et al. 1995. DNA typing of HLA class II genes in Japanese patients with dilated cardiomyopathy. J. Mol. Cell. Cardiol. 27: 2385-2392.
- 3. Li, Y., et al. 1995. Dilated cardiomyopathy and neonatal lethality in mutant mice lacking manganese superoxide dismutase. Nat. Genet. 11: 376-381.
- Borgstahl, G.E., et al. 1996. Human mitochondrial manganese superoxide dismutase polymorphic variant Ile58Thr reduces activity by destabilizing the tetrameric interface. Biochemistry 35: 4287-4297.
- Hsieh, Y., et al. 1998. Probing the active site of human manganese superoxide dismutase: the role of glutamine 143. Biochemistry 37: 4731-4739.
- Melov, S., et al. 1998. A novel neurological phenotype in mice lacking mitochondrial manganese superoxide dismutase. Nat. Genet. 18: 159-163.
- Melov, S., et al. 1999. Mitochondrial disease in superoxide disumtase 2 mutant mice. Proc. Natl. Acad. Sci. USA 96: 846-851.
- 8. Hiroi, S., et al. 1999. Polymorphisms in the SOD-2 and HLA-DRB1 genes are associated with nonfamilial idopathic dilated cardiomyopathy in Japanese. Biochem. Biophys. Res. Commun. 261: 332-339.

CHROMOSOMAL LOCATION

Genetic locus: SOD2 (bovine) mapping to 9.

PRODUCT

SOD-2 siRNA (bovine) is a pool of 3 target-specific 19-25 nt siRNAs designed to knock down gene expression. Each vial contains 3.3 nmol of lyophilized siRNA, sufficient for a 10 μ M solution once resuspended using protocol below. Suitable for 50-100 transfections. Also see SOD-2 shRNA Plasmid (bovine): sc-156006-SH and SOD-2 shRNA (bovine) Lentiviral Particles: sc-156006-V as alternate gene silencing products.

For independent verification of SOD-2 (bovine) gene silencing results, we also provide the individual siRNA duplex components. Each is available as 3.3 nmol of lyophilized siRNA. These include: sc-156006A, sc-156006B and sc-156006C.

STORAGE AND RESUSPENSION

Store lyophilized siRNA duplex at -20° C with desiccant. Stable for at least one year from the date of shipment. Once resuspended, store at -20° C, avoid contact with RNAses and repeated freeze thaw cycles.

Resuspend lyophilized siRNA duplex in 330 μ l of the RNAse-free water provided. Resuspension of the siRNA duplex in 330 μ l of RNAse-free water makes a 10 μ M solution in a 10 μ M Tris-HCl, pH 8.0, 20 mM NaCl, 1 mM EDTA buffered solution.

APPLICATIONS

SOD-2 siRNA (bovine) is recommended for the inhibition of SOD-2 expression in bovine cells.

SUPPORT REAGENTS

For optimal siRNA transfection efficiency, Santa Cruz Biotechnology's siRNA Transfection Reagent: sc-29528 (0.3 ml), siRNA Transfection Medium: sc-36868 (20 ml) and siRNA Dilution Buffer: sc-29527 (1.5 ml) are recommended. Control siRNAs or Fluorescein Conjugated Control siRNAs are available as 10 µM in 66 µl. Each contain a scrambled sequence that will not lead to the specific degradation of any known cellular mRNA. Fluorescein Conjugated Control siRNAs include: sc-36869, sc-44239, sc-44240 and sc-44241. Control siRNAs include: sc-37007, sc-44230, sc-44231, sc-44232, sc-44233, sc-44234, sc-44235, sc-44236, sc-44237 and sc-44238.

GENE EXPRESSION MONITORING

SOD-2 (E-10): sc-137254 is recommended as a control antibody for monitoring of gene expression knockdown by Western Blotting (starting dilution 1:200, dilution range 1:100-1:1000) or immunofluorescence (starting dilution 1:50, dilution range 1:50-1:500).

To ensure optimal results, the following support reagents are recommended: 1) Western Blotting: use m-lgG κ BP-HRP: sc-516102 or m-lgG κ BP-HRP (Cruz Marker): sc-516102-CM (dilution range: 1:1000-1:10000), Cruz MarkerTM Molecular Weight Standards: sc-2035, UltraCruz[®] Blocking Reagent: sc-516214 and Western Blotting Luminol Reagent: sc-2048. 2) Immunofluorescence: use m-lgG κ BP-FITC: sc-516140 or m-lgG κ BP-PE: sc-516141 (dilution range: 1:50-1:200) with UltraCruz[®] Mounting Medium: sc-24941 or UltraCruz[®] Hard-set Mounting Medium: sc-359850.

RT-PCR REAGENTS

Semi-quantitative RT-PCR may be performed to monitor SOD-2 gene expression knockdown using RT-PCR Primer: SOD-2 (bovine)-PR: sc-156006-PR (20 μ l). Annealing temperature for the primers should be 55-60° C and the extension temperature should be 68-72° C.

RESEARCH USE

For research use only, not for use in diagnostic procedures.

PROTOCOLS

See our web site at www.scbt.com for detailed protocols and support products.

Santa Cruz Biotechnology, Inc. 1.800.457.3801 831.457.3801 **Europe** +00800 4573 8000 49 6221 4503 0 **www.scbt.com**