SANTA CRUZ BIOTECHNOLOGY, INC.

Aldolase A (h): 293T Lysate: sc-159689

The Power to Question

BACKGROUND

Fructose 1,6-bisphosphate aldolase catalyses the reversible condensation of glycerone-P and glyceraldehyde 3-phosphate into fructose 1,6-bisphosphate. Fructose 1,6-bisphosphate aldolase exists as three forms, the muscle-specific Aldolase A, the liver-specific Aldolase B, and the brain-specific Aldolase C. Aldolase A, B, and C arose from a common ancestral gene, from which Aldolase B first diverged. Aldolase A is one of the most highly conserved enzymes known, with only about 2% of the residues changing per 100 million years. Aldolase B is regulated by the hormones Insulin and glucagon and has been implicated in hereditary fructose intolerance disease. Aldolase C is a polypeptide that is exclusively expressed in Purkinje cells. Aldolase C-positive Purkinje cells are organized in the cerebellum as stripes or bands that run from anterior to posterior across the cerebellum and alternate with bands of Aldolase C-negative Purkinje cells.

REFERENCES

- Izzo, P., Costanzo, P., Lupo, A., Rippa, E., Paolella, G. and Salvatore, F. 1988. Human Aldolase A gene. Structural organization and tissue-specific expression by multiple promoters and alternate mRNA processing. Eur. J. Biochem. 174: 569-578.
- Freemont, P.S., Dunbar, B. and Fothergill-Gilmore, L.A. 1988. The complete amino acid sequence of human skeletal muscle fructose-bisphosphate aldolase. Biochem. J. 249: 779-788.
- Caffé, A.R., Von Schantz, M., Szél, A., Voogd, J. and Van Veen, T. 1994.
 Distribution of Purkinje cell-specific zebrin II/Aldolase C immunoreactivity in the mouse, rat, rabbit and human retina. J. Comp. Neurol. 348: 291-297.
- 4. Hawkes, R. and Herrup, K. 1995. Aldolase C/zebrin II and the regionalization of the cerebellum. J. Mol. Neurosci. 6: 147-158.
- Lannoo, M.J. and Hawkes, R. 1997. A search for primitive Purkinje cells: zebrin II expression in sea lampreys (*Petromyzon marinus*). Neurosci. Lett. 237: 53-55.
- Walther, E.U., Dichgans, M., Maricich, S.M., Romito, R.R., Yang, F., Dziennis, S., Zackson, S., Hawkes, R. and Herrup, K. 1998. Genomic sequences of Aldolase C (zebrin II) direct lacZ expression exclusively in non-neuronal cells of transgenic mice. Proc. Natl. Acad. Sci. USA 95: 2615-2620.
- 7. Dehnes, Y., Chaudhry, F.A., Ullensvang, K., Lehre, K.P., Storm-Mathisen, J. and Danbolt, N.C. 1998. The glutamate transporter EAAT4 in rat cerebellar Purkinje cells: a glutamate-gated chloride channel concentrated near the synapse in parts of the dendritic membrane facing astroglia. J. Neurosci. 18: 3606-3619.
- 8. Eisenman, L.M., Gallagher, E. and Hawkes, R. 1998. Regionalization defects in the weaver mouse cerebellum. J. Comp. Neurol. 394: 431-444.
- Takano, Y., luchi, Y., Ito, J., Otsu, K., Kuzumaki, T. and Ishikawa, K. 2000. Characterization of the responsive elements to hormones in the rat Aldolase B gene. Arch. Biochem. Biophys. 377: 58-64.

STORAGE

Store at -20° C. Repeated freezing and thawing should be minimized. Sample vial should be boiled once prior to use. Non-hazardous. No MSDS required.

CHROMOSOMAL LOCATION

Genetic locus: ALDOA (human) mapping to 16p11.2.

PRODUCT

Aldolase A (h): 293T Lysate represents a lysate of human Aldolase A transfected 293T cells and is provided as 100 μ g protein in 200 μ l SDS-PAGE buffer.

APPLICATIONS

Aldolase A (h): 293T Lysate is suitable as a Western Blotting positive control for human reactive Aldolase A antibodies. Recommended use: $10\text{-}20~\mu l$ per lane.

Control 293T Lysate: sc-117752 is available as a Western Blotting negative control lysate derived from non-transfected 293T cells.

RESEARCH USE

For research use only, not for use in diagnostic procedures.

PROTOCOLS

See our web site at www.scbt.com for detailed protocols and support products.

Santa Cruz Biotechnology, Inc. 1.800.457.3801 831.457.3800 fax 831.457.3801 **Europe** +00800 4573 8000 49 6221 4503 0 **www.scbt.com**