Dbs (h): 293T Lysate: sc-159837

The Power to Question

BACKGROUND

The Dbl family act as guanine nucleotide exchange factors (GEFs) specific for Rho guanosine triphosphatases (GTPases). They regulate Rho GTPase function by stimulating formation of the active, GTP-bound state. All Dbl family members invariably possess a tandem domain structure, which consists of a Dbl homology (DH) catalytic domain followed by a pleckstrin homology (PH) regulatory domain. Dbs (for Dbl's big sister) differs from Dbl by the addition of an amino-terminal extension and a carboxy-terminal SH3 domain. Unlike Dbl, it also requires the presence of the PH domain for the intrinsic catalytic activity of the DH domain. The expression of Dbs is high in several tissues, including brain, and low in thymus and spleen. Dbs exhibits guanine nucleotide exchange activity for Rho A and Cdc42 to mediate growth deregulation. Dbs activity involves multiple signaling pathways that include activation of the Elk-1, Jun and NF κ B transcription factors and stimulation of transcription from the cyclin D1 promoter.

REFERENCES

- Whitehead, I., Kirk, H. and Kay, R. 1995. Retroviral transduction and oncogenic selection of a cDNA encoding Dbs, a homolog of the Dbl guanine nucleotide exchange factor. Oncogene 10: 713-721.
- 2. Whitehead, I.P., Lambert, Q.T., Glaven, J.A., Abe, K., Rossman, K.L., Mahon, G.M., Trzaskos, J.M., Kay, R., Campbell, S.L. and Der C.J. 1999. Dependence of Dbl and Dbs transformation on MEK and NFκB activation. Mol. Cell. Biol. 19: 7759-7770.
- 3. Rossman, K.L., Worthylake, D.K., Snyder, J.T., Siderovski, D.P., Campbell, S.L. and Sondek, J. 2002. A crystallographic view of interactions between Dbs and Cdc42: PH domain-assisted guanine nucleotide exchange. EMBO J. 21: 1315-1326.
- Rossman, K.L., Cheng, L., Mahon, G.M., Rojas, R.J., Snyder, J.T., Whitehead, I.P. and Sondek, J. 2003. Multifunctional roles for the PH domain of Dbs in regulating Rho GTPase activation. J. Biol. Chem. 278: 18393-18400.
- Fuentes, E.J., Karnoub, A.E., Booden, M.A., Der, C.J. and Campbell, S.L. 2003. Critical role of the pleckstrin homology domain in Dbs signaling and growth regulation. J. Biol. Chem. 278: 21188-21196.

CHROMOSOMAL LOCATION

Genetic locus: MCF2L (human) mapping to 13q34.

PRODUCT

Dbs (h): 293T Lysate represents a lysate of human Dbs transfected 293T cells and is provided as 100 μ g protein in 200 μ l SDS-PAGE buffer.

STORAGE

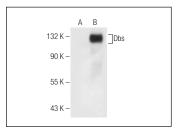
Store at -20° C. Repeated freezing and thawing should be minimized. Sample vial should be boiled once prior to use. Non-hazardous. No MSDS required.

PROTOCOLS

See our web site at www.scbt.com for detailed protocols and support products.

APPLICATIONS

Dbs (h): 293T Lysate is suitable as a Western Blotting positive control for human reactive Dbs antibodies.


Control 293T Lysate: sc-117752 is available as a Western Blotting negative control lysate derived from non-transfected 293T cells.

Dbs (C-7): sc-376400 is recommended as a positive control antibody for Western Blot analysis of enhanced human Dbs expression in Dbs transfected 293T cells (starting dilution 1:100, dilution range 1:100-1:1,000).

RECOMMENDED SUPPORT REAGENTS

To ensure optimal results, the following support reagents are recommended: 1) Western Blotting: use m-lgG κ BP-HRP: sc-516102 or m-lgG κ BP-HRP (Cruz Marker): sc-516102-CM (dilution range: 1:1000-1:10000), Cruz MarkerTM Molecular Weight Standards: sc-2035, UltraCruz® Blocking Reagent: sc-516214 and Western Blotting Luminol Reagent: sc-2048.

DATA

Dbs (C-7): sc-376400. Western blot analysis of Dbs expression in non-transfected: sc-117752 (A) and human Dbs transfected: sc-159837 (B) 293T whole call lyeates

RESEARCH USE

For research use only, not for use in diagnostic procedures.