SerRS (h): 293T Lysate: sc-170165

The Power to Question

BACKGROUND

The fidelity of protein synthesis requires efficient discrimination of amino acid substrates by aminoacyl-tRNA synthetases. Aminoacyl-tRNA synthetases function to catalyze the aminoacylation of tRNAs by their corresponding amino acids, thus linking amino acids with tRNA-contained nucleotide triplets. SerRS (seryl-tRNA synthetase), also known as SERS or SARS, is a 514 amino acid member of the class-II aminoacyl-tRNA synthetase family that catalyzes the tRNASer-serine aminoacylation reaction. Localized to the cytoplasm, SerRS exists as a homodimer and contains a core catalytic domain and a tRNA-binding domain. In addition to recognizing and serylating tRNASer, SerRS can also recognize and serylate tRNASec (tRNAselenocysteine). Via this interaction, SerRS is implicated in selenocysteine (Sec) biosynthesis.

REFERENCES

- Miseta, A., et al. 1991. Mammalian seryl-tRNA synthetase associates with mRNA *in vivo* and has homology to elongation factor 1α. J. Biol. Chem. 266: 19158-19161.
- Wu, X.Q. and Gross, H.J. 1993. The long extra arms of human tRNA^{(Ser)Sec} and tRNA^{Ser} function as major identify elements for serylation in an orientation-dependent, but not sequence-specific manner. Nucleic Acids Res. 21: 5589-5594.
- Vincent, C., et al. 1997. Genomic organization, cDNA sequence, bacterial expression and purification of human seryl-tRNA synthase. Eur. J. Biochem. 250: 77-84.
- 4. Heckl, M., et al. 1998. Minimal tRNA^{Ser} and tRNA^{Sec} substrates for human seryl-tRNA synthetase: contribution of tRNA domains to serylation and tertiary structure. FEBS Lett. 427: 315-319.
- Yokogawa, T., et al. 2000. Characterization and tRNA recognition of mammalian mitochondrial seryl-tRNA synthetase. J. Biol. Chem. 275: 19913-19920.
- Casas, C., et al. 2001. Antibodies against c-Jun N-terminal peptide crossreact with neo-epitopes emerging after caspase-mediated proteolysis during apoptosis. J. Neurochem. 77: 904-915.
- 7. Online Mendelian Inheritance in Man, OMIM™. 2002. Johns Hopkins University, Baltimore, MD. MIM Number: 607529. World Wide Web URL: http://www.ncbi.nlm.nih.gov/omim/
- 8. Nagao, A., et al. 2007. Aminoacyl-tRNA surveillance by EF-Tu in mammalian mitochondria. Nucleic Acids Symp. Ser. 51: 41-42.
- 9. Sherrer, R.L., et al. 2008. Divergence of selenocysteine tRNA recognition by archaeal and eukaryotic 0-phosphoseryl-tRNASec kinase. Nucleic Acids Res. 36: 1871-1880.

CHROMOSOMAL LOCATION

Genetic locus: SARS (human) mapping to 1p13.3.

PRODUCT

SerRS (h): 293T Lysate represents a lysate of human SerRS transfected 293T cells and is provided as 100 μ g protein in 200 μ l SDS-PAGE buffer.

APPLICATIONS

SerRS (h): 293T Lysate is suitable as a Western Blotting positive control for human reactive SerRS antibodies. Recommended use: 10-20 µl per lane.

Control 293T Lysate: sc-117752 is available as a Western Blotting negative control lysate derived from non-transfected 293T cells.

STORAGE

Store at -20° C. Repeated freezing and thawing should be minimized. Sample vial should be boiled once prior to use. Non-hazardous. No MSDS required.

RESEARCH USE

For research use only, not for use in diagnostic procedures.

PROTOCOLS

See our web site at www.scbt.com for detailed protocols and support products.

Santa Cruz Biotechnology, Inc. 1.800.457.3801 831.457.3801 fax 831.457.3801 Europe +00800 4573 8000 49 6221 4503 0 www.scbt.com