Id2 (h): 293T Lysate: sc-172551

The Power to Question

BACKGROUND

Members of the Id family of basic helix-loop-helix (bHLH) proteins include Id1, Id2, Id3 and Id4. They are ubiquitously expressed and dimerize with members of the class A and B HLH proteins. Due to the absence of the basic region, the resulting heterodimers cannot bind DNA. The Id-type proteins thus appear to negatively regulate DNA binding of bHLH proteins. Since Id1 inhibits DNA binding of E12 and MyoD, it apparently functions to inhibit muscle-specific gene expression. Under conditions that facilitate muscle cell differentiation, the Id protein levels fall, allowing E12 and/or E47 to form heterodimers with MyoD and myogenin, which in turn activate myogenic differentiation. It has been shown that expression of each of the Id proteins is strongly dependent on growth factor activation and that reduction of Id mRNA levels by antisense oligonucleotides leads to a delayed reentry of arrested cells into the cell cycle following growth factor stimulation.

REFERENCES

- 1. Benezra, R., Davis, R.L., Lockshon, D., Turner, D.L. and Weintraub, H. 1990. The protein Id: a negative regulator of helix-loop-helix DNA binding proteins. Cell 61: 49-59.
- 2. Christy, B.A., Sanders, L.K., Lau, L.F., Copeland, N.G., Jenkins, N.A. and Nathans, D. 1991. An Id-related helix-loop-helix protein encoded by a growth factor-inducible gene. Proc. Natl. Acad. Sci. USA 88: 1815-1819.
- 3. Sun, X., Copeland, N.G., Jenkins, N.A. and Baltimore, D. 1991. Id proteins Id1 and Id2 selectively inhibit DNA binding by one class of helix-loop-helix proteins. Mol. Cell. Biol. 11: 5603-5611.
- 4. Neuhold, L.A. and Wold, B. 1993. HLH forced dimers: tethering MyoD to E47 generates a dominant positive myogenic factor insulated from negative regulation by Id. Cell 74: 1033-1042.
- Riechmann, V., van Crüchten, I. and Sablitzky, F. 1994. The expression pattern of Id4, a novel dominant negative helix-loop-helix protein, is distinct from Id1, Id2 and Id3. Nucleic Acids Res. 22: 749-755.
- Barone, M.V., Pepperkok, R., Peverali, F.A. and Philipson, L. 1994. Id proteins control growth induction in mammalian cells. Proc. Natl. Acad. Sci. USA 91: 4985-4988.
- 7. Hara, E., Yamaguchi, T., Nojima, H., Ide, T., Campisi, J., Okayama, H. and Oda, K. 1994. Id-related genes encoding helix-loop-helix proteins are required for G_1 progression and are repressed in senescent human fibroblasts. J. Biol. Chem. 269: 2139-2145.
- 8. LocusLink Report (LocusID: 3398). http://www.ncbi.nlm.nih.gov/LocusLink/

CHROMOSOMAL LOCATION

Genetic locus: ID2 (human) mapping to 2p25.1.

PRODUCT

ld2 (h): 293T Lysate represents a lysate of human ld2 transfected 293T cells and is provided as 100 μ g protein in 200 μ l SDS-PAGE buffer.

RESEARCH USE

For research use only, not for use in diagnostic procedures.

APPLICATIONS

ld2 (h): 293T Lysate is suitable as a Western Blotting positive control for human reactive ld2 antibodies. Recommended use: 10-20 μl per lane.

Control 293T Lysate: sc-117752 is available as a Western Blotting negative control lysate derived from non-transfected 293T cells.

STORAGE

Store at -20° C. Repeated freezing and thawing should be minimized. Sample vial should be boiled once prior to use. Non-hazardous. No MSDS required.

PROTOCOLS

See our web site at www.scbt.com for detailed protocols and support products.

Santa Cruz Biotechnology, Inc. 1.800.457.3801 831.457.3800 fax 831.457.3801 Europe +00800 4573 8000 49 6221 4503 0 www.scbt.com