elF2Bβ (h2): 293T Lysate: sc-172832

The Power to Question

BACKGROUND

The initiation of protein synthesis in eukaryotic cells is regulated by interactions between protein initiation factors and RNA molecules. The eukaryotic initiation complex elF2B exists as a five subunit complex composed of elF2 α , elF2 β , elF2 γ , elF2B δ , and elF2B ϵ . The elF2B complex catalyzes the exchange of GDP for GTP on the elF2 complex, following the interaction of elF2/GTP with the 40S ribosomal subunit. Guanine nucleotide exchange factor (GEF) activity is exhibited by the elF2B ϵ subunit alone, but is greater in the presence of all five elF2B subunits. Phosphorylation of elF2 inhibits GEF activity of elF2B, an inhibition that requires the elF2 α subunit.

REFERENCES

- 1. Trachsel, H. and Staehelin, T. 1978. Binding and release of eukaryotic initiation factor eIF2 and GTP during protein synthesis initiation. Proc. Natl. Acad. Sci. USA 75: 204-208.
- Benne, R., Amesz, H., Hershey, J.W. and Voorma, H.O. 1979. The activity
 of eukaryotic initiation factor eIF2 in ternary complex formation with GTP
 and Met-tRNA. J. Biol. Chem. 254: 3201-3205.
- 3. Ernst, H., Duncan, R.F. and Hershey, J.W. 1987. Cloning and sequencing of complementary DNAs encoding the α -subunit of translational initiation factor eIF2. Characterization of the protein and its messenger RNA. J. Biol. Chem. 262: 1206-1212.
- Pathak, V.K., Nielsen, P.J., Trachsel, H. and Hershey, J.W. 1988. Structure
 of the β subunit of translational initiation factor eIF2. Cell 54: 633-639.
- Kaufman, R.J., Davies, M.V., Pathak, V.K. and Hershey, J.W. 1989. The phosphorylation state of eucaryotic initiation factor 2 alters translational efficiency of specific mRNAs. Mol. Cell. Biol. 9: 946-958.
- 6. Gaspar, N.J., Kinzy, T.G., Scherer, B.J., Humbelin, M., Hershey, J.W. and Merrick, W.C. 1994. Translation initiation factor eIF2. Cloning and expression of the human cDNA encoding the γ subunit. J. Biol. Chem. 269: 3415-3422.

CHROMOSOMAL LOCATION

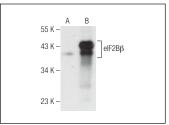
Genetic locus: EIF2B2 (human) mapping to 14q24.3.

PRODUCT

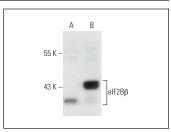
elF2B β (h2): 293T Lysate represents a lysate of human elF2B β transfected 293T cells and is provided as 100 μ g protein in 200 μ l SDS-PAGE buffer.

APPLICATIONS

elF2B β (h2): 293T Lysate is suitable as a Western Blotting positive control for human reactive elF2B β antibodies. Recommended use: 10-20 μ l per lane.


Control 293T Lysate: sc-117752 is available as a Western Blotting negative control lysate derived from non-transfected 293T cells.

elF2B β (E-12): sc-376478 is recommended as a positive control antibody for Western Blot analysis of enhanced human elF2B β expression in elF2B β transfected 293T cells (starting dilution 1:100, dilution range 1:100-1:1,000).


RECOMMENDED SUPPORT REAGENTS

To ensure optimal results, the following support reagents are recommended: 1) Western Blotting: use m-lgG κ BP-HRP: sc-516102 or m-lgG κ BP-HRP (Cruz Marker): sc-516102-CM (dilution range: 1:1000-1:10000), Cruz MarkerTM Molecular Weight Standards: sc-2035, UltraCruz® Blocking Reagent: sc-516214 and Western Blotting Luminol Reagent: sc-2048.

DATA

elF2Bβ (P-4): sc-9979. Western blot analysis of elF2Bβ expression in non-transfected: sc-117752 (**A**) and human elF2Bβ transfected: sc-172832 (**B**) 293T whole cell lysates

STORAGE

Store at -20° C. Repeated freezing and thawing should be minimized. Sample vial should be boiled once prior to use. Non-hazardous. No MSDS required.

RESEARCH USE

For research use only, not for use in diagnostic procedures.

PROTOCOLS

See our web site at www.scbt.com for detailed protocols and support products.

Santa Cruz Biotechnology, Inc. 1.800.457.3801 831.457.3800 fax 831.457.3801 Europe +00800 4573 8000 49 6221 4503 0 www.scbt.com