RFC4 (h): 293T Lysate: sc-173395

The Power to Question

BACKGROUND

Replication factor C (RFC) is an essential DNA polymerase accessory protein that is required for numerous aspects of DNA metabolism including DNA replication, DNA repair, and telomere metabolism. RFC is a heteropentameric complex that recognizes a primer on a template DNA, binds to a primer terminus and loads proliferating cell nuclear antigen (PCNA) onto DNA at primer-template junctions in an ATP-dependent reaction. All five of the RFC subunits share a set of related sequences (RFC boxes) that include nucleotide-binding consensus sequences. Four of the five RFC genes (RFC1, RFC2, RFC3 and RFC4) have consensus ATP-binding motifs. The small RFC proteins, RFC2, RFC3, RFC4 and RFC5, interact with Rad24, whereas the RFC1 subunit does not. Specifically, RFC4 plays a role in checkpoint regulation. RFC4 is a component of BASC (for BRCA1-associated genome surveillance complex) which serves as a sensor for abnormal DNA structures and/or as a regulator of the postreplication repair process. The human RFC4 gene maps to chromosome 3q27.3 and encodes the RFC4 subunit.

REFERENCES

- Cullmann, G., et al. 1995. Characterization of the five replication factor C genes of Saccharomyces cerevisiae. Mol. Cell. Biol. 15: 4661-4671.
- 2. Beckwith, W.H., et al. 1998. Destabilized PCNA trimers suppress defective RFC1 proteins *in vivo* and *in vitro*. Biochemistry 37: 3711-3722.
- 3. Noskov, V.N., et al. 1998. The RFC2 gene, encoding the third-largest subunit of the replication factor C complex, is required for an S-phase checkpoint in *Saccharomyces cerevisiae*. Mol. Cell. Biol. 18: 4914-4923.
- 4. Green, C.M., et al. 2000. A novel Rad24 checkpoint protein complex closely related to replication factor C. Curr. Biol. 10: 39-42.
- Schmidt, S.L., et al. 2001. ATP utilization by yeast replication factor C. IV. RFC ATP-binding mutants show defects in DNA replication, DNA repair, and checkpoint regulation. J. Biol. Chem. 276: 34792-34800.
- Krause, S.A., et al. 2001. Loss of cell cycle checkpoint control in *Drosophila* RFC4 mutants. Mol. Cell. Biol. 21: 5156-5168.
- 7. Online Mendelian Inheritance in Man, OMIM™. 2001. Johns Hopkins University, Baltimore, MD. MIM Number: 102577. World Wide Web URL: http://www.ncbi.nlm.nih. gov/omim/

CHROMOSOMAL LOCATION

Genetic locus: RFC4 (human) mapping to 3q27.3.

PRODUCT

RFC4 (h): 293T Lysate represents a lysate of human RFC4 transfected 293T cells and is provided as 100 μ g protein in 200 μ l SDS-PAGE buffer.

STORAGE

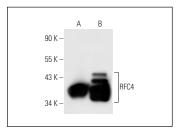
Store at -20° C. Repeated freezing and thawing should be minimized. Sample vial should be boiled once prior to use. Non-hazardous. No MSDS required.

RESEARCH USE

For research use only, not for use in diagnostic procedures.

APPLICATIONS

RFC4 (h): 293T Lysate is suitable as a Western Blotting positive control for human reactive RFC4 antibodies. Recommended use: 10-20 μ l per lane.


Control 293T Lysate: sc-117752 is available as a Western Blotting negative control lysate derived from non-transfected 293T cells.

RFC4 (C-9): sc-28301 is recommended as a positive control antibody for Western Blot analysis of enhanced human RFC4 expression in RFC4 transfected 293T cells (starting dilution 1:100, dilution range 1:100-1:1,000).

RECOMMENDED SUPPORT REAGENTS

To ensure optimal results, the following support reagents are recommended: 1) Western Blotting: use m-lgG κ BP-HRP: sc-516102 or m-lgG κ BP-HRP (Cruz Marker): sc-516102-CM (dilution range: 1:1000-1:10000), Cruz MarkerTM Molecular Weight Standards: sc-2035, UltraCruz® Blocking Reagent: sc-516214 and Western Blotting Luminol Reagent: sc-2048.

DATA

RFC4 (C-9): sc-28301. Western blot analysis of RFC4 expression in non-transfected: sc-117752 (**A**) and human RFC4 transfected: sc-173395 (**B**) 293T whole call lysates

PROTOCOLS

See our web site at www.scbt.com for detailed protocols and support products.