FMO4 (h2): 293T Lysate: sc-173525

The Power to Question

BACKGROUND

The flavin-containing monooxygenase (FMO) family consists of five gene products, FMO1-5, that are major enzymatic oxidants involved in the metabolism of various therapeutics. Amino-trimethylamine (TMA), a diet-derived chemical from eggs, fish and legumes, is metabolized by FMOs. A polymorphism in genes encoding FMOs leads to a reduced TMA amino-oxidation capacity, leading to the excretion of relatively large amounts of TMA in urine, sweat and breath. This condition is known as trimethylaminuria, also known as fish-odor syndrome because individuals with this polymorphism exhibit a fishy body odor due to the free, unmetabolized amine. Located in the liver, FMO4 (flavin-containing monooxygenase 4), also known as Dimethylaniline monooxygenase and originally termed FMO2, is a 558 amino acid endoplasmic reticular protein that shares about fifty-percent sequence similarity with FMO1.

REFERENCES

- Dolphin, C.T., et al. 1992. Cloning, primary sequence and chromosomal localization of human FMO2, a new member of the flavin-containing mono-oxygenase family. Biochem. J. 287: 261-267.
- 2. Lawton, M.P., et al. 1994. A nomenclature for the mammalian flavin-containing monooxygenase gene family based on amino acid sequence identities. Arch. Biochem. Biophys. 308: 254-257.
- 3. Phillips, I.R., et al. 1995. The molecular biology of the Flavin-containing monooxygenases of man. Chem. Biol. Interact. 96: 17-32.
- Furnes, B., et al. 2003. Identification of novel variants of the flavin-containing monooxygenase gene family in African Americans. Drug Metab. Dispos. 31: 187-193.
- Cashman, J.R. 2008. Role of flavin-containing monooxygenase in drug development. Expert Opin. Drug Metab. Toxicol. 4: 1507-1521.
- Henderson, M.C., et al. 2008. Metabolism of the anti-tuberculosis drug ethionamide by mouse and human FM01, FM02 and FM03 and mouse and human lung microsomes. Toxicol. Appl. Pharmacol. 233: 420-427.
- 7. Online Mendelian Inheritance in Man, OMIM™. 2008. Johns Hopkins University, Baltimore, MD. MIM Number: 136131. World Wide Web URL: http://www.ncbi.nlm.nih.gov/omim/
- Zhang, J., et al. 2009. Hepatic flavin-containing monooxygenase gene regulation in different mouse inflammation models. Drug Metab. Dispos. 37: 462-468.
- Novick, R.M., et al. 2009. Differential localization of flavin-containing monooxygenase (FMO) isoforms 1, 3, and 4 in rat liver and kidney and evidence for expression of FMO4 in mouse, rat, and human liver and kidney microsomes. J. Pharmacol. Exp. Ther. 329: 1148-1155.

CHROMOSOMAL LOCATION

Genetic locus: FMO4 (human) mapping to 1g24.3.

PRODUCT

FM04 (h2): 293T Lysate represents a lysate of human FM04 transfected 293T cells and is provided as 100 μg protein in 200 μl SDS-PAGE buffer.

APPLICATIONS

FM04 (h2): 293T Lysate is suitable as a Western Blotting positive control for human reactive FM04 antibodies.

Control 293T Lysate: sc-117752 is available as a Western Blotting negative control lysate derived from non-transfected 293T cells.

STORAGE

Store at -20° C. Repeated freezing and thawing should be minimized. Sample vial should be boiled once prior to use. Non-hazardous. No MSDS required.

RESEARCH USE

For research use only, not for use in diagnostic procedures.

PROTOCOLS

See our web site at www.scbt.com for detailed protocols and support products.

Santa Cruz Biotechnology, Inc. 1.800.457.3801 831.457.3800 fax 831.457.3801 **Europe** +00800 4573 8000 49 6221 4503 0 **www.scbt.com**