L-type Ca⁺⁺ CP β1 (h): 293T Lysate: sc-176607

The Power to Question

BACKGROUND

Voltage-dependent Ca²⁺ channels mediate Ca²⁺ entry into excitable cells in response to membrane depolarization, and they are involved in a variety of Ca²⁺-dependent processes, including muscle contraction, hormone or neurotransmitter release and gene expression. Calcium channels are highly diverse, multimeric complexes composed of an α -1 subunit, an intracellular β -subunit, a disulfide linked α -2/ δ subunit and a transmembrane γ -subunit. Ca²⁺ currents are characterized on the basis of their biophysical and pharmacologic properties and include L-, N-, T-, P-, Q-, and R- types. L-type Ca⁺⁺ currents initiate muscle contraction, endocrine secretion, and gene transcription, and can be regulated through second-messenger activated protein phosphorylation pathways. L-type calcium channels may form macromolecular signaling complexes with G protein-coupled receptors, thereby enhancing the selectivity of regulating specific targets.

REFERENCES

- 1. Perez-Reyes, E. and Schneider, T. 1995. Molecular biology of calcium channels. Kidney Int. 48: 1111-1124.
- 2. Randall, A.D. 1998. The molecular basis of voltage-gated Ca²⁺ channel diversity: is it time for T? J. Membr. Biol. 161: 207-213.
- Catterall, W.A. 2000. Structure and regulation of voltage-gated Ca²⁺ channels. Annu. Rev. Cell Dev. Biol. 16: 521-555.
- 4. Davare, M.A., Avdonin, V., Hall, D.D., Peden, E.M., Burette, A., Weinberg, R.J., Horne, M.C., Hoshi, T. and Hell, J.W. 2001. A β_2 adrenergic receptor signaling complex assembled with the Ca²⁺ channel Ca_v1.2. Science 293: 98-101.
- Online Mendelian Inheritance in Man, OMIM™. 2001. Johns Hopkins University, Baltimore, MD. MIM Number: 601011. World Wide Web URL: http://www.ncbi.nlm.nih.gov/omim/

CHROMOSOMAL LOCATION

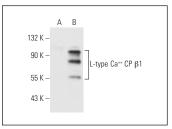
Genetic locus: CACNB1 (human) mapping to 17q12.

PRODUCT

L-type Ca++ CP β 1 (h): 293T Lysate represents a lysate of human L-type Ca++ CP β 1 transfected 293T cells and is provided as 100 μ g protein in 200 μ I SDS-PAGE buffer.

APPLICATIONS

L-type Ca⁺⁺ CP β 1 (h): 293T Lysate is suitable as a Western Blotting positive control for human reactive L-type Ca⁺⁺ CP β 1 antibodies. Recommended use: 10-20 μ 1 per lane.


Control 293T Lysate: sc-117752 is available as a Western Blotting negative control lysate derived from non-transfected 293T cells.

L-type Ca⁺⁺ CP β 1 (Y-2D68): sc-134377 is recommended as a positive control antibody for Western Blot analysis of enhanced human L-type Ca⁺⁺ CP β 1 expression in L-type Ca⁺⁺ CP β 1 transfected 293T cells (starting dilution 1:100, dilution range 1:100-1:1,000).

RECOMMENDED SUPPORT REAGENTS

To ensure optimal results, the following support reagents are recommended: 1) Western Blotting: use m-lgG κ BP-HRP: sc-516102 or m-lgG κ BP-HRP (Cruz Marker): sc-516102-CM (dilution range: 1:1000-1:10000), Cruz MarkerTM Molecular Weight Standards: sc-2035, UltraCruz® Blocking Reagent: sc-516214 and Western Blotting Luminol Reagent: sc-2048.

DATA

L-type Ca $^{++}$ CP β 1 (Y-2D68): sc-134377. Western blot analysis of L-type Ca $^{++}$ CP β 1 expression in non-transfected: sc-117752 (**A**) and human L-type Ca $^{++}$ CP β 1 transfected: sc-176607 (**B**) 293T whole cell lysates.

STORAGE

Store at -20° C. Repeated freezing and thawing should be minimized. Sample vial should be boiled once prior to use. Non-hazardous. No MSDS required.

RESEARCH USE

For research use only, not for use in diagnostic procedures.

PROTOCOLS

See our web site at www.scbt.com for detailed protocols and support products.

Santa Cruz Biotechnology, Inc. 1.800.457.3801 831.457.3800 fax 831.457.3801 Europe +00800 4573 8000 49 6221 4503 0 www.scbt.com