SANTA CRUZ BIOTECHNOLOGY, INC.

V-ATPase D1 (h): 293T Lysate: sc-176665

The Power to Question

BACKGROUND

Vacuolar-type H+-ATPase (V-ATPase) is a multisubunit enzyme responsible for the acidification of eukaryotic intracellular organelles. V-ATPases pump protons against an electrochemical gradient, while F-ATPases reverse the process, thereby synthesizing ATP. A peripheral V $_1$ domain, which is responsible for ATP hydrolysis, and an integral V $_0$ domain, which is responsible for proton translocation, comprise the V-ATPase complex. Nine subunits (A-H) make up the V $_1$ domain and five subunits (A, D, C, C' and C'') make up the V $_0$ domain. V-ATPase D1 (ATPase, H+ transporting, lysosomal, V $_0$ subunit D1), also known as ATP6V0D1, P39, VATX, VMA6, ATP6D or VPATPD, is the D subunit of the V $_0$ domain. Expressed ubiquitously, V-ATPase D1 acts in concert with other V $_0$ subunits to catalytically acidify a variety of intracellular compartments, thereby synthesizing ATP to be used for vacuolar transport.

REFERENCES

- van Hille, B., Vanek, M., Richener, H., Green, J.R. and Bilbe, G. 1993.
 Cloning and tissue distribution of subunits C, D, and E of the human vacuolar H*-ATPase. Biochem. Biophys. Res. Commun. 197: 15-21.
- 2. Finbow, M.E. and Harrison, M.A. 1997. The vacuolar H+-ATPase: a universal proton pump of eukaryotes. Biochem. J. 324: 697-712.
- 3. Forgac, M. 1999. Structure and properties of the vacuolar (H+)-ATPases. J. Biol. Chem. 274: 12951-12954.
- Agarwal, A.K. and White, P.C. 2000. Structure of the VPATPD gene encoding subunit D of the human vacuolar proton ATPase. Biochem. Biophys. Res. Commun. 279: 543-547.
- Smith, A.N., Borthwick, K.J. and Karet, F.E. 2002. Molecular cloning and characterization of novel tissue-specific isoforms of the human vacuolar H+-ATPase C, G and d subunits, and their evaluation in autosomal recessive distal renal tubular acidosis. Gene 297: 169-177.
- 6. Nishi, T. and Forgac, M. 2002. The vacuolar (H+)-ATPases—nature's most versatile proton pumps. Nat. Rev. Mol. Cell Biol. 3: 94-103.
- Morel, N. 2003. Neurotransmitter release: the dark side of the vacuolar-H+-ATPases. Biol. Cell 95: 453-457.
- 8. Kawasaki-Nishi, S., Nishi, T. and Forgac, M. 2003. Proton translocation driven by ATP hydrolysis in V-ATPases. FEBS Lett. 545: 76-85.
- Pietrement, C., Sun-Wada, G.H., Silva, N.D., McKee, M., Marshansky, V., Brown, D., Futai, M. and Breton, S. 2006. Distinct expression patterns of different subunit isoforms of the V-ATPase in the rat epididymis. Biol. Reprod. 74: 185-194.

CHROMOSOMAL LOCATION

Genetic locus: ATP6V0D1 (human) mapping to 16q22.1.

PRODUCT

V-ATPase D1 (h): 293T Lysate represents a lysate of human V-ATPase D1 transfected 293T cells and is provided as 100 μ g protein in 200 μ l SDS-PAGE buffer.

APPLICATIONS

V-ATPase D1 (h): 293T Lysate is suitable as a Western Blotting positive control for human reactive V-ATPase D1 antibodies. Recommended use: 10-20 μ l per lane.

Control 293T Lysate: sc-117752 is available as a Western Blotting negative control lysate derived from non-transfected 293T cells.

STORAGE

Store at -20° C. Repeated freezing and thawing should be minimized. Sample vial should be boiled once prior to use. Non-hazardous. No MSDS required.

RESEARCH USE

For research use only, not for use in diagnostic procedures.

PROTOCOLS

See our web site at www.scbt.com for detailed protocols and support products.

Santa Cruz Biotechnology, Inc. 1.800.457.3801 831.457.3800 fax 831.457.3801 Europe +00800 4573 8000 49 6221 4503 0 www.scbt.com