ThrRS (h4): 293T Lysate: sc-178049

The Power to Question

BACKGROUND

Aminoacyl-tRNA synthetases function to catalyze the aminoacylation of tRNAs by their corresponding amino acids, thus linking amino acids with tRNA-contained nucleotide triplets. ThrRS (threonyl-tRNA synthetase), also known as TARS, is a 723 amino acid member of the class-II aminoacyl-tRNA synthetase family that catalyzes the tRNA(Thr)-threonine aminoacylation reaction. Localized to the cytoplasm, ThrRS contains a zinc-binding catalytic domain, a C terminal tRNA-binding domain and an N terminal editing domain. ThrRS has four mobile regions, three of which have a key residue that changes conformation throughout catalysis, thereby mediating the dynamics of the tRNA-amino acid reaction. The fourth mobile region contains an ordering loop which helps to close the active site once the substrate (threonine) is in place.

REFERENCES

- Sankaranarayanan, R., Dock-Bregeon, A.C., Romby, P., Caillet, J., Springer, M., Rees, B., Ehresmann, C., Ehresmann, B. and Moras, D. 1999. The structure of threonyl-tRNA synthetase-tRNA(Thr) complex enlightens its repressor activity and reveals an essential zinc ion in the active site. Cell 97: 371-381.
- Ishikura, H., Nagaoka, Y., Yokozawa, J., Umehara, T., Kuno, A. and Hase-gawa, T. 2000. Threonyl-tRNA synthetase of archaea: importance of the discriminator base in the aminoacylation of threonine tRNA. Nucleic Acids Symp. Ser. 44: 83-84.
- 3. Torres-Larios, A., Sankaranarayanan, R., Rees, B., Dock-Bregeon, A.C. and Moras, D. 2003. Conformational movements and cooperativity upon amino acid, ATP and tRNA binding in threonyl-tRNA synthetase. J. Mol. Biol. 331: 201-211.
- Ruan, B., Bovee, M.L., Sacher, M., Stathopoulos, C., Poralla, K., Francklyn, C.S. and Söll, D. 2005. A unique hydrophobic cluster near the active site contributes to differences in borrelidin inhibition among threonyl-tRNA synthetases. J. Biol. Chem. 280: 571-577.
- Yamasaki, Y., Yamada, H., Nozaki, T., Akaogi, J., Nichols, C., Lyons, R., Loy, A.C., Chan, E.K., Reeves, W.H. and Satoh, M. 2006. Unusually high frequency of autoantibodies to PL7 associated with milder muscle disease in Japanese patients with polymyositis/dermatomyositis. Arthritis Rheum. 54: 2004-2009.
- Hussain, T., Kruparani, S.P., Pal, B., Dock-Bregeon, A.C., Dwivedi, S., Shekar, M.R., Sureshbabu, K. and Sankaranarayanan, R. 2006. Posttransfer editing mechanism of a D-aminoacyl-tRNA deacylase-like domain in threonyl-tRNA synthetase from archaea. EMBO J. 25: 4152-4162.
- Asanuma, Y., Koichihara, R., Koyama, S., Kawabata, Y., Kobayashi, S., Mimori, T. and Moriguchi, M. 2006. Antisynthetase syndrome associated with sarcoidosis. Intern. Med. 45: 1065-1068.
- 8. Ling, J., Roy, H. and Ibba, M. 2007. Mechanism of tRNA-dependent editing in translational quality control. Proc. Natl. Acad. Sci. USA 104: 72-77.

STORAGE

Store at -20° C. Repeated freezing and thawing should be minimized. Sample vial should be boiled once prior to use. Non-hazardous. No MSDS required.

CHROMOSOMAL LOCATION

Genetic locus: TARS (human) mapping to 5p13.3.

PRODUCT

ThrRS (h4): 293T Lysate represents a lysate of human ThrRS transfected 293T cells and is provided as 100 µg protein in 200 µl SDS-PAGE buffer.

APPLICATIONS

ThrRS (h4): 293T Lysate is suitable as a Western Blotting positive control for human reactive ThrRS antibodies. Recommended use: 10-20 µl per lane.

Control 293T Lysate: sc-117752 is available as a Western Blotting negative control lysate derived from non-transfected 293T cells.

RESEARCH USE

For research use only, not for use in diagnostic procedures.

PROTOCOLS

See our web site at www.scbt.com for detailed protocols and support products.

Santa Cruz Biotechnology, Inc. 1.800.457.3801 831.457.3800 fax 831.457.3801 **Europe** +00800 4573 8000 49 6221 4503 0 **www.scbt.com**