PKLR (m): 293 Lysate: sc-179336

The Power to Question

BACKGROUND

In mammals, four different isoenzymes exist for pyruvate kinase. Based on their tissue distribution, the isoenzymes are designated L-type (for predominant expression in the liver), R-type (for predominant expression in red blood cells), M1-type (for predominant expression in muscle, brain and heart) and M2-type (for predominant expression in fetal tissues). Pyruvate kinases are responsible for catalyzing the final step in glycolysis: the conversion of phosphoenolpyruvate to pyruvate with the coinciding generation of ATP. The PKLR (pyruvate kinase, liver and red blood cells) gene encodes the L- and R-type isoenzymes through alternative splicing events under the control of different promoters. The R-type isoform, also known as RPK (R-type pyruvate kinase), exists as a tetramer and, when functioning improperly, can result in chronic/ hereditary nonspherocytic hemolytic anemia (CNSHA/HNSHA) or pyruvate kinase hyperactivity (also called high red cell ATP syndrome). The L-type isoform, alternatively known as PKL (pyruvate kinase L-type), also exists as a tetramer and is upregulated by glucose with implications in maturity-onset diabetes of the young (MODY).

REFERENCES

- Tani, K., Fujii, H., Tsutsumi, H., Sukegawa, J., Toyoshima, K., Yoshida, M.C., Noguchi, T., Tanaka, T. and Miwa, S. 1987. Human liver type pyruvate kinase: cDNA cloning and chromosomal assignment. Biochem. Biophys. Res. Commun. 143: 431-438.
- Tani, K., Tsutsumi, H., Takahashi, K., Ogura, H., Kanno, H., Hayasaka, K., Narisawa, K., Nakahata, T., Akabane, T. and Morisaki, T. 1988. Two homozygous cases of erythrocyte pyruvate kinase (PK) deficiency in Japan: PK Sendai and PK Shinshu. Am. J. Hematol. 28: 186-190.
- 3. Nordström, L. and Lerner, S.A. 1991. Single daily dose therapy with amino-glycosides. J. Hosp. Infect. 18: 117-129.
- 4. Wang, H., Chu, W., Das, S.K., Ren, Q., Hasstedt, S.J. and Elbein, S.C. 2002. Liver pyruvate kinase polymorphisms are associated with type 2 diabetes in northern European Caucasians. Diabetes 51: 2861-2865.
- van Wijk, R., van Solinge, W.W., Nerlov, C., Beutler, E., Gelbart, T., Rijksen, G. and Nielsen, F.C. 2003. Disruption of a novel regulatory element in the erythroid-specific promoter of the human PKLR gene causes severe pyruvate kinase deficiency. Blood 101: 1596-1602.
- Park-Hah, J.O., Kanno, H., Kim, W.D. and Fujii, H. 2005. A novel homozygous mutation of PKLR gene in a pyruvate-kinase-deficient Korean family. Acta Haematol. 113: 208-211.

CHROMOSOMAL LOCATION

Genetic locus: Pklr (mouse) mapping to 3 F1.

PRODUCT

PKLR (m): 293 Lysate represents a lysate of mouse PKLR transfected 293 cells and is provided as 100 µg protein in 200 µl SDS-PAGE buffer.

STORAGE

Store at -20° C. Repeated freezing and thawing should be minimized. Sample vial should be boiled once prior to use. Non-hazardous. No MSDS required.

APPLICATIONS

PKLR (m): 293 Lysate is suitable as a Western Blotting positive control for mouse reactive PKLR antibodies. Recommended use: 10-20 µl per lane.

Control 293 Lysate: sc-110760 is available as a Western Blotting negative control lysate derived from non-transfected 293 cells.

RESEARCH USE

For research use only, not for use in diagnostic procedures.

PROTOCOLS

See our web site at www.scbt.com for detailed protocols and support products.

Santa Cruz Biotechnology, Inc. 1.800.457.3801 831.457.3800 fax 831.457.3801 Europe +00800 4573 8000 49 6221 4503 0 www.scbt.com