# **AG-1288**

# sc-200664

**Material Safety Data Sheet** 



The Power to Questio

Hazard Alert Code Key:

**EXTREME** 

HIGH

MODERATE

LOW

## Section 1 - CHEMICAL PRODUCT AND COMPANY IDENTIFICATION

## **PRODUCT NAME**

AG-1288

#### STATEMENT OF HAZARDOUS NATURE

CONSIDERED A HAZARDOUS SUBSTANCE ACCORDING TO OSHA 29 CFR 1910.1200.

#### NFΡΔ



#### **SUPPLIER**

Company: Santa Cruz Biotechnology, Inc.

Address:

2145 Delaware Ave Santa Cruz, CA 95060

Telephone: 800.457.3801 or 831.457.3800

Emergency Tel: CHEMWATCH: From within the US and

Canada: 877-715-9305

Emergency Tel: From outside the US and Canada: +800 2436

2255 (1-800-CHEMCALL) or call +613 9573 3112

#### **PRODUCT USE**

■ Epidermal Growth Factor (EGF) results in cellular proliferation, differentiation, and survival. EGF is a low-molecular-weight polypeptide first purified from the mouse submandibular gland, but since then found in many human tissues including submandibular gland, parotid gland. Salivary EGF, which seems also regulated by dietary inorganic iodine, also plays an important physiological role in the maintenance of oro-oesophageal and gastric tissue integrity. The biological effects of salivary EGF include healing of oral and gastroesophageal ulcers, inhibition of gastric acid secretion, stimulation of DNA synthesis as well as mucosal protection from intraluminal injurious factors such as gastric acid, bile acids, pepsin, and trypsin and to physical, chemical and bacterial agents. EGF acts by binding with high affinity to epidermal growth factor receptor (EGFR) on the cell surface and stimulating the intrinsic protein-tyrosine kinase activity of the receptor. The tyrosine kinase activity, in turn, initiates a signal transduction cascade that results in a variety of biochemical changes within the cell - a rise in intracellular calcium levels, increased glycolysis and protein synthesis, and increases in the expression of certain genes including the gene for EGFR - that ultimately lead to DNA synthesis and cell proliferation Stimulation of Epidermal Growth Factor Receptors (EGFR), found on the cell membrane, may result in tumour growth and proliferation, inhibition of apoptosis, stimulation of angiogenesis and the promotion of tissue invasion and metastasis. The receptor is overexpressed in a variety of cancers, including 95% of advanced tumours of the pancreas, up to 90% of tumours in the kidney and the head and the neck, up to 80% of some lung cancers, and up to 70% and 75% of tumours of the ovaries and colon respectively. Ligands such as epidermal growth factor (EGF) and transforming growth factor alpha (TGF alpha) bind to EGFR and turn on a sequence of signalling pathways important to pro-tumour mechanisms. Compo

#### **SYNONYMS**

C10-H5-N3-O4, "Tyrphostin AG1288/ AG-1288/ AG 1288", "TNF-alpha tyrosine/ protein kinase inhibitor", "EGFR antineoplastic"

# **Section 2 - HAZARDS IDENTIFICATION**



#### **EMERGENCY OVERVIEW RISK**

Contact with acids liberates very toxic gas.

# POTENTIAL HEALTH EFFECTS ACUTE HEALTH EFFECTS

#### **SWALLOWED**

■ Accidental ingestion of the material may be damaging to the health of the individual.

■ Nitrile poisoning exhibits similar symptoms to poisoning due to hydrogen cyanide. The substances irritate the eyes and skin, and are absorbed quickly and completely through the skin. The use of the term "organic nitriles" should be discouraged.

■ The most common side-effects, associated with the clinical use of Epidermal Growth Factor Receptor (EGFR) inhibitors of tyrosine kinase, in the treatment of non-small cell lung cancers (NSCLC), include diarrhoea, skin rash, nausea, vomiting, headache, dizziness, asthenia, fatigue and loss of appetite. Less common side-effects may include dryness of the mouth, skin dryness, exfoliative dermatitis, pruritus, and itchiness. Rare side-effects may include dryness of the eyes, eye pain and liver

Interstitial pneumonia (sometimes fatal), may also develop as a side-effect of treatment.

High doses of some EGFR inhibitors, administered to dogs, produced decreased body weight, absence of food intake, bloody stools, tremors, emaciation, prostration, ocular changes (palpebral and bulbar conjunctiva redness, partially closed eyes, lachrymation, purulent discharge, corneal opacities, oedema, ulceration and corneal perforation), increased neutrophils and fibrinogen, cachexia, dehydration, abnormal corneal surface, and abnormal surface of the digestive tract. Microscopic findings included diffuse corneal atrophy, corneal ulcers and uveal inflammation, papillary necrosis of kidneys, inflammation and/or haemorrhage of the digestive tract and degeneration of skeletal muscle.

■ Although the material is not thought to be an irritant, direct contact with the eye may cause transient discomfort characterized by tearing or conjunctival redness (as with windburn). Slight abrasive damage may also result. The material may produce foreign body irritation in certain individuals.

#### SKIN

- The material is not thought to produce adverse health effects or skin irritation following contact (as classified using animal models). Nevertheless, good hygiene practice requires that exposure be kept to a minimum and that suitable gloves be used in an occupational setting.
- Open cuts, abraded or irritated skin should not be exposed to this material.
- Entry into the blood-stream, through, for example, cuts, abrasions or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected.

## **INHALED**

- The material is not thought to produce either adverse health effects or irritation of the respiratory tract following inhalation (as classified using animal models). Nevertheless, adverse effects have been produced following exposure of animals by at least one other route and good hygiene practice requires that exposure be kept to a minimum and that suitable control measures be used in an occupational setting.

  Persons with impaired respiratory function, airway diseases and conditions such as emphysema or chronic bronchitis, may
- incur further disability if excessive concentrations of particulate are inhaled.

#### CHRONIC HEALTH EFFECTS

■ Limited evidence suggests that repeated or long-term occupational exposure may produce cumulative health effects involving organs or biochemical systems.

Exposure to the material may cause concerns for human fertility, on the basis that similar materials provide some evidence of impaired fertility in the absence of toxic effects, or evidence of impaired fertility occurring at around the same dose levels as other toxic effects, but which are not a secondary non-specific consequence of other toxic effects.

Animal studies with some Epidermal Growth Factor Receptor (EGFR) inhibitors of tyrosine kinase, indicate that repeated doses may produce adverse effects in many tissues including the eyes.

Repeated exposures may also produce adverse effects on fertility as well as embryo- or foeto-toxicity (generally at maternally toxic levels).

Some chronic administration studies with rats have produced eosinophilic chief cells in the stomach mucosa, haematuria, hair follicular degeneration, papillary necrosis and increased ovarian atrophy, liver necrosis and mononuclear cell infiltration of the

In dogs, chronic studies have produced sporadic emesis, salivation, erythema, decreased absolute red blood cell counts, haematocrit and haemoglobin (in males), increased regeneration of renal proximal tubules, hair loss, ocular changes, and corneal ulceration

The material may inhibit protein kinase. This family of kinases enzymatically catalyses the phosphorylation of protein . Because phosphorylation triggers a signaling cascade which in turn produces cell growth, inhibition effectively retards the process. There are several different inhibitors which act in this manner but most common are genistein (a naturally occurring steroid-like substance from soybeans), lavendustin (a microbial metabolite) and the tyrphostins (synthetic analogues). Two families of protein kinase have been identified:

- serine-threonine kinases (also known as PKC) require calcium ion for their activation. The activated PKC phosphorylates proteins of the cellular signal cascade, which eventually induce expression of growth regulatory genes.
- tyrosine kinases which similarly regulate signal transmission to growth regulatory genes

Inhibition may suppress cell or tissue growth or development.

Long term exposure to high dust concentrations may cause changes in lung function i.e. pneumoconiosis; caused by particles less than 0.5 micron penetrating and remaining in the lung. Prime symptom is breathlessness; lung shadows show on X-ray. Chronic exposure to cyanides and certain nitriles may result in interference to iodine uptake by thyroid gland and its consequent enlargement. This occurs following metabolic conversion of the cyanide moiety to thiocyanate. Thyroid insufficiency may also occur as a result of metabolic conversion of cyanides to the corresponding thiocyanate. Exposure to small amounts of cyanide compounds over long periods are reported to cause loss of appetite, headache, weakness, nausea, dizziness, abdominal pain, changes in taste and smell, muscle cramps, weight loss, flushing of the face, persistent runny nose and irritation of the upper respiratory tract and eyes. These symptoms are not specific to cyanide exposure and therefore the existence of a chronic cyanide toxicity remains speculative. Repeated minor contact with cyanides produce a characteristic rash with itching, papules (small, superficial raised spots on the skin) and possible sensitization. Concerns have been expressed that low-level, long term exposures may result in damage to the nerves of the eye.

#### Section 3 - COMPOSITION / INFORMATION ON INGREDIENTS

#### **HAZARD RATINGS**

|               |   | Min | Max                 |
|---------------|---|-----|---------------------|
| Flammability: | 1 |     |                     |
| Toxicity:     | 2 |     |                     |
| Body Contact: | 0 |     | Min/Nil=0           |
| Reactivity:   | 1 |     | Low=1<br>Moderate=2 |
| Chronic:      | 2 |     | High=3<br>Extreme=4 |

NAME CAS RN %

(3,4-dihydroxy-5-nitrobenzylidene)malonitrile 116313-73-6 >98

#### Section 4 - FIRST AID MEASURES

## **SWALLOWED**

- · If swallowed do NOT induce vomiting.
- If vomiting occurs, lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration.
- Observe the patient carefully.
- Never give liquid to a person showing signs of being sleepy or with reduced awareness; i.e. becoming unconscious.
- · Give water to rinse out mouth, then provide liquid slowly and as much as casualty can comfortably drink.
- · Seek medical advice.

## **EYE**

- If this product comes in contact with the eyes:
- · Wash out immediately with fresh running water.
- Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids.
- If pain persists or recurs seek medical attention.
- Removal of contact lenses after an eye injury should only be undertaken by skilled personnel.

## SKIN

- If skin or hair contact occurs:
- Flush skin and hair with running water (and soap if available).
- Seek medical attention in event of irritation.

#### **INHALED**

- If dust is inhaled, remove from contaminated area.
- Encourage patient to blow nose to ensure clear passage of breathing.
- If irritation or discomfort persists seek medical attention.

#### **NOTES TO PHYSICIAN**

■ Treat symptomatically.

# **Section 5 - FIRE FIGHTING MEASURES**

| Vapour Pressure (mmHG):     | Negligible     |  |
|-----------------------------|----------------|--|
| Upper Explosive Limit (%):  | Not available. |  |
| Specific Gravity (water=1): | Not available  |  |
| Lower Explosive Limit (%):  | Not available  |  |

# **EXTINGUISHING MEDIA**

\_

- Foam
- Dry chemical powder.
- BCF (where regulations permit).
- Carbon dioxide.
- Water spray or fog Large fires only.

# FIRE FIGHTING

·

- Alert Emergency Responders and tell them location and nature of hazard.
- Wear breathing apparatus plus protective gloves.
- Prevent, by any means available, spillage from entering drains or water course.
- Use water delivered as a fine spray to control fire and cool adjacent area.

- DO NOT approach containers suspected to be hot.
- Cool fire exposed containers with water spray from a protected location.
- If safe to do so, remove containers from path of fire.
- Equipment should be thoroughly decontaminated after use.

#### GENERAL FIRE HAZARDS/HAZARDOUS COMBUSTIBLE PRODUCTS

•

- · Combustible solid which burns but propagates flame with difficulty.
- Avoid generating dust, particularly clouds of dust in a confined or unventilated space as dusts may form an explosive
  mixture with air, and any source of ignition, i.e. flame or spark, will cause fire or explosion. Dust clouds generated by the
  fine grinding of the solid are a particular hazard; accumulations of fine dust may burn rapidly and fiercely if ignited.
- Dry dust can be charged electrostatically by turbulence, pneumatic transport, pouring, in exhaust ducts and during transport.
- Build-up of electrostatic charge may be prevented by bonding and grounding.
- Powder handling equipment such as dust collectors, dryers and mills may require additional protection measures such as explosion venting.

Combustion products include: carbon monoxide (CO), carbon dioxide (CO2), nitrogen oxides (NOx), other pyrolysis products typical of burning organic material.

May emit poisonous fumes.

#### FIRE INCOMPATIBILITY

■ Avoid contamination with oxidizing agents i.e. nitrates, oxidizing acids,chlorine bleaches, pool chlorine etc. as ignition may result.

#### PERSONAL PROTECTION

Glasses:

Chemical goggles.

Gloves:

Respirator:

Particulate

# Section 6 - ACCIDENTAL RELEASE MEASURES

#### MINOR SPILLS

- · Clean up waste regularly and abnormal spills immediately.
- · Avoid breathing dust and contact with skin and eyes.
- · Wear protective clothing, gloves, safety glasses and dust respirator.
- Use dry clean up procedures and avoid generating dust.
- Vacuum up or sweep up. NOTE: Vacuum cleaner must be fitted with an exhaust micro filter (HEPA type) (consider explosion-proof machines designed to be grounded during storage and use).
- Dampen with water to prevent dusting before sweeping.
- Place in suitable containers for disposal.

# MAJOR SPILLS

- Moderate hazard.
- CAUTION: Advise personnel in area.
- Alert Emergency Responders and tell them location and nature of hazard.
- · Control personal contact by wearing protective clothing.
- Prevent, by any means available, spillage from entering drains or water courses.
- Recover product wherever possible.
- IF DRY: Use dry clean up procedures and avoid generating dust. Collect residues and place in sealed plastic bags or other containers for disposal. IF WET: Vacuum/shovel up and place in labelled containers for disposal.
- ALWAYS: Wash area down with large amounts of water and prevent runoff into drains.
- If contamination of drains or waterways occurs, advise emergency services.

#### ACUTE EXPOSURE GUIDELINE LEVELS (AEGL) (in ppm)

AEGL 1: The airborne concentration of a substance above which it is predicted that the general population, including susceptible individuals, could experience notable discomfort, irritation, or certain asymptomatic nonsensory effects. However, the effects are not disabling and are transient and reversible upon cessation of exposure.

AEGL 2: The airborne concentration of a substance above which it is predicted that the general population, including susceptible individuals, could experience irreversible or other serious, long-lasting adverse health effects or an impaired ability to escape.

AEGL 3: The airborne concentration of a substance above which it is predicted that the general population, including susceptible individuals, could experience life-threatening health effects or death.

#### Section 7 - HANDLING AND STORAGE

## PROCEDURE FOR HANDLING

- Avoid all personal contact, including inhalation.
- Wear protective clothing when risk of exposure occurs.
- Use in a well-ventilated area.
- Prevent concentration in hollows and sumps.
- DO NOT enter confined spaces until atmosphere has been checked.
- DO NOT allow material to contact humans, exposed food or food utensils.
- · Avoid contact with incompatible materials.

- · When handling, DO NOT eat, drink or smoke.
- Keep containers securely sealed when not in use.
- · Avoid physical damage to containers.
- Always wash hands with soap and water after handling.
- · Work clothes should be laundered separately.
- Launder contaminated clothing before re-use.
- Use good occupational work practice.
- · Observe manufacturer's storing and handling recommendations.
- Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions are maintained.

Empty containers may contain residual dust which has the potential to accumulate following settling. Such dusts may explode in the presence of an appropriate ignition source.

- Do NOT cut, drill, grind or weld such containers
- In addition ensure such activity is not performed near full, partially empty or empty containers without appropriate workplace safety authorisation or permit.

#### RECOMMENDED STORAGE METHODS

- Glass container.
- Polyethylene or polypropylene container.
- · Check all containers are clearly labelled and free from leaks.

#### STORAGE REQUIREMENTS

- · Store in original containers.
- · Keep containers securely sealed.
- Store in a cool, dry, well-ventilated area.
- Store away from incompatible materials and foodstuff containers.
- Protect containers against physical damage and check regularly for leaks.
- Observe manufacturer's storing and handling recommendations.

#### SAFE STORAGE WITH OTHER CLASSIFIED CHEMICALS



- X: Must not be stored together
- O: May be stored together with specific preventions
- +: May be stored together

# **Section 8 - EXPOSURE CONTROLS / PERSONAL PROTECTION**

#### **EXPOSURE CONTROLS**

| Source                                                                                    | Material                                                                                                                      | TWA<br>mg/m³ | STEL<br>mg/m³ | Peak<br>mg/m³ | TWA<br>F/CC | Notes |
|-------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|--------------|---------------|---------------|-------------|-------|
| US - Oregon Permissible<br>Exposure Limits (Z3)                                           | (3,4-dihydroxy-5-<br>nitrobenzylidene)malonitrile (Inert or<br>Nuisance Dust: (d) Total dust)                                 | 10           |               |               |             | *     |
| US OSHA Permissible<br>Exposure Levels (PELs) -<br>Table Z3                               | (3,4-dihydroxy-5-<br>nitrobenzylidene)malonitrile (Inert or<br>Nuisance Dust: (d) Respirable fraction)                        | 5            |               |               |             |       |
| US OSHA Permissible<br>Exposure Levels (PELs) -<br>Table Z3                               | (3,4-dihydroxy-5-<br>nitrobenzylidene)malonitrile (Inert or<br>Nuisance Dust: (d) Total dust)                                 | 15           |               |               |             |       |
| US - Hawaii Air<br>Contaminant Limits                                                     | (3,4-dihydroxy-5-<br>nitrobenzylidene)malonitrile (Particulates<br>not other wise regulated - Total dust)                     | 10           |               |               |             |       |
| US - Hawaii Air<br>Contaminant Limits                                                     | (3,4-dihydroxy-5-<br>nitrobenzylidene)malonitrile (Particulates<br>not other wise regulated - Respirable<br>fraction)         | 5            |               |               |             |       |
| US - Oregon Permissible<br>Exposure Limits (Z3)                                           | (3,4-dihydroxy-5-<br>nitrobenzylidene)malonitrile (Inert or<br>Nuisance Dust: (d) Respirable fraction)                        | 5            |               |               |             | *     |
| US - Tennessee<br>Occupational Exposure<br>Limits - Limits For Air<br>Contaminants        | (3,4-dihydroxy-5-<br>nitrobenzylidene)malonitrile (Particulates<br>not otherwise regulated Respirable<br>fraction)            | 5            |               |               |             |       |
| US - Wyoming Toxic and<br>Hazardous Substances<br>Table Z1 Limits for Air<br>Contaminants | (3,4-dihydroxy-5-<br>nitrobenzylidene)malonitrile (Particulates<br>not otherwise regulated (PNOR)(f)-<br>Respirable fraction) | 5            |               |               |             |       |

#### MATERIAL DATA

(3,4-DIHYDROXY-5-NITROBENZYLIDENE)MALONITRILE:

Airborne particulate or vapor must be kept to levels as low as is practicably achievable given access to modern engineering controls and monitoring hardware. Biologically active compounds may produce idiosyncratic effects which are entirely unpredictable on the basis of literature searches and prior clinical experience (both recent and past).

#### PERSONAL PROTECTION



Consult your EHS staff for recommendations

#### **EYE**

■ When handling very small quantities of the material eye protection may not be required.

For laboratory, larger scale or bulk handling or where regular exposure in an occupational setting occurs:

- Chemical goggles
- Face shield. Full face shield may be required for supplementary but never for primary protection of eyes
- Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lens or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation - lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59]

#### HANDS/FEET

- Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include: such as:
- frequency and duration of contact,
- · chemical resistance of glove material,
- · glove thickness and
- dexterity

Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739).

- · When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374) is recommended.
- When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374) is recommended.
- Contaminated gloves should be replaced.

Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.

- Rubber gloves (nitrile or low-protein, powder-free latex). Employees allergic to latex gloves should use nitrile gloves in preference.
- Double gloving should be considered.
- · PVC gloves.
- Protective shoe covers.
- · Head covering.

Experience indicates that the following polymers are suitable as glove materials for protection against undissolved, dry solids, where abrasive particles are not present.

- polychloroprene
- · nitrile rubber
- butyl rubber
- fluorocaoutchouc
- polyvinyl chloride

Gloves should be examined for wear and/ or degradation constantly.

#### OTHER

For quantities up to 500 grams a laboratory coat may be suitable.

- For quantities up to 1 kilogram a disposable laboratory coat or coverall of low permeability is recommended. Coveralls should be buttoned at collar and cuffs.
- For quantities over 1 kilogram and manufacturing operations, wear disposable coverall of low permeability and disposable shoe covers.
- For manufacturing operations, air-supplied full body suits may be required for the provision of advanced respiratory protection.
- Eye wash unit.
- Ensure there is ready access to an emergency shower.
- For Emergencies: Vinyl suit
- Respirators may be necessary when engineering and administrative controls do not adequately prevent exposures.
- The decision to use respiratory protection should be based on professional judgment that takes into account toxicity information, exposure measurement data, and frequency and likelihood of the worker's exposure - ensure users are not subject to high thermal loads which may result in heat stress or distress due to personal protective equipment (powered, positive flow, full face apparatus may be an option).
- Published occupational exposure limits, where they exist, will assist in determining the adequacy of the selected respiratory

- . These may be government mandated or vendor recommended.
- Certified respirators will be useful for protecting workers from inhalation of particulates when properly selected and fit tested
  as part of a complete respiratory protection program.
- Use approved positive flow mask if significant quantities of dust becomes airborne.
- · Try to avoid creating dust conditions.

#### **RESPIRATOR**

| Protection Factor | Half-Face Respirator | Full-Face Respirator | Powered Air Respirator |
|-------------------|----------------------|----------------------|------------------------|
| 10 x PEL          | P1                   | -                    | PAPR-P1                |
|                   | Air-line*            | -                    | -                      |
| 50 x PEL          | Air-line**           | P2                   | PAPR-P2                |
| 100 x PEL         | -                    | P3                   | -                      |
|                   |                      | Air-line*            | -                      |
| 100+ x PEL        | -                    | Air-line**           | PAPR-P3                |
|                   |                      |                      |                        |

\* - Negative pressure demand \*\* - Continuous flow

Explanation of Respirator Codes:

Class 1 low to medium absorption capacity filters.

Class 2 medium absorption capacity filters.

Class 3 high absorption capacity filters.

PAPR Powered Air Purifying Respirator (positive pressure) cartridge.

Type A for use against certain organic gases and vapors.

Type AX for use against low boiling point organic compounds (less than 65°C).

Type B for use against certain inorganic gases and other acid gases and vapors.

Type E for use against sulfur dioxide and other acid gases and vapors.

Type K for use against ammonia and organic ammonia derivatives

Class P1 intended for use against mechanically generated particulates of sizes most commonly encountered in industry, e.g. asbestos, silica.

Class P2 intended for use against both mechanically and thermally generated particulates, e.g. metal fume.

Class P3 intended for use against all particulates containing highly toxic materials, e.g. beryllium.

The local concentration of material, quantity and conditions of use determine the type of personal protective equipment required.

Use appropriate NIOSH-certified respirator based on informed professional judgement. In conditions where no reasonable estimate of exposure can be made, assume the exposure is in a concentration IDLH and use NIOSH-certified full face pressure demand SCBA with a minimum service life of 30 minutes, or a combination full facepiece pressure demand SAR with auxiliary self-contained air supply. Respirators provided only for escape from IDLH atmospheres shall be NIOSH-certified for escape from the atmosphere in which they will be used.

#### **ENGINEERING CONTROLS**

■ Enclosed local exhaust ventilation is required at points of dust, fume or vapor generation.

HEPA terminated local exhaust ventilation should be considered at point of generation of dust, fumes or vapors.

Barrier protection or laminar flow cabinets should be considered for laboratory scale handling.

The need for respiratory protection should also be assessed where incidental or accidental exposure is anticipated: Dependent on levels of contamination, PAPR, full face air purifying devices with P2 or P3 filters or air supplied respirators should be evaluated

Fume-hoods and other open-face containment devices are acceptable when face velocities of at least 1 m/s (200 feet/minute) are achieved. Partitions, barriers, and other partial containment technologies are required to prevent migration of the material to uncontrolled areas. For non-routine emergencies maximum local and general exhaust are necessary. Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to effectively remove the contaminant.

| Type of Contaminant:                                                                                                                                                             | Air Speed:                       |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|
| solvent, vapors, etc. evaporating from tank (in still air)                                                                                                                       | 0.25-0.5 m/s (50-100 f/min.)     |
| aerosols, fumes from pouring operations, intermittent container filling, low speed conveyer transfers (released at low velocity into zone of active generation)                  | 0.5-1 m/s (100-200 f/min.)       |
| direct spray, drum filling, conveyer loading, crusher dusts, gas discharge (active generation into zone of rapid air motion) Within each range the appropriate value depends on: | 1-2.5 m/s (200-500 f/min.)       |
| Lower end of the range                                                                                                                                                           | Upper end of the range           |
| 1: Room air currents minimal or favourable to capture                                                                                                                            | 1: Disturbing room air currents  |
| 2: Contaminants of low toxicity or of nuisance value only.                                                                                                                       | 2: Contaminants of high toxicity |
| 3: Intermittent, low production.                                                                                                                                                 | 3: High production, heavy use    |
| 4: Large hood or large air mass in motion                                                                                                                                        | 4: Small hood-local control only |

Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 1-2.5 m/s (200-500 f/min.) for extraction of gases discharged 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used.

## Section 9 - PHYSICAL AND CHEMICAL PROPERTIES

#### PHYSICAL PROPERTIES

Solid.

Does not mix with water.

Contact with acids liberates very toxic gas.

| State                     | Divided solid  | Molecular Weight               | 231.2           |
|---------------------------|----------------|--------------------------------|-----------------|
| Melting Range (°F)        | Not available  | Viscosity                      | Not Applicable  |
| Boiling Range (°F)        | Not available  | Solubility in water (g/L)      | Partly miscible |
| Flash Point (°F)          | Not available  | pH (1% solution)               | Not applicable  |
| Decomposition Temp (°F)   | Not available. | pH (as supplied)               | Not applicable  |
| Autoignition Temp (°F)    | Not available  | Vapour Pressure (mmHG)         | Negligible      |
| Upper Explosive Limit (%) | Not available. | Specific Gravity (water=1)     | Not available   |
| Lower Explosive Limit (%) | Not available  | Relative Vapor Density (air=1) | Not Applicable  |
| Volatile Component (%vol) | Negligible     | Evaporation Rate               | Not Applicable  |

#### **APPEARANCE**

Solid; does not mix well with water.

#### **Section 10 - CHEMICAL STABILITY**

#### CONDITIONS CONTRIBUTING TO INSTABILITY

- · Presence of incompatible materials.
- Product is considered stable.
- · Hazardous polymerization will not occur.

#### STORAGE INCOMPATIBILITY

- Avoid strong acids.
- · Nitriles may polymerize in the presence of metals and some metal compounds.
- They are incompatible with acids; mixing nitriles with strong oxidizing acids can lead to extremely violent reactions.
- Nitriles are generally incompatible with other oxidizing agents such as peroxides and epoxides.
- The combination of bases and nitriles can produce hydrogen cyanide. Nitriles are hydrolyzed exothermally in both aqueous acid and base to give carboxylic acids (or salts of carboxylic acids).
- · Nitriles can react vigorously with reducing agents.
- The covalent cyano group is endothermic and many organic nitriles are reactive under certain conditions; N-cyano derivatives are reactive or unstable.
- The majority of endothermic compounds are thermodynamically unstable and may decompose explosively under various circumstances of initiation.
- Many but not all endothermic compounds have been involved in decompositions, reactions and explosions and, in general, compounds with significantly positive values of standard heats of formation, may be considered suspect on stability grounds. BRETHERICK L.: Handbook of Reactive Chemical Hazards.

Avoid reaction with oxidizing agents.

For incompatible materials - refer to Section 7 - Handling and Storage.

# Section 11 - TOXICOLOGICAL INFORMATION

(3,4-dihydroxy-5-nitrobenzylidene)malonitrile

#### **TOXICITY AND IRRITATION**

■ No significant acute toxicological data identified in literature search.

#### Section 12 - ECOLOGICAL INFORMATION

Refer to data for ingredients, which follows:

(3,4-DIHYDROXY-5-NITROBENZYLIDENE)MALONITRILE:

■ DO NOT discharge into sewer or waterways.

# **Section 13 - DISPOSAL CONSIDERATIONS**

#### **US EPA Waste Number & Descriptions**

A. General Product Information

Reactivity characteristic: use EPA hazardous waste number D003 (waste code R).

# **Disposal Instructions**

All waste must be handled in accordance with local, state and federal regulations.

Puncture containers to prevent re-use and bury at an authorized landfill.

Legislation addressing waste disposal requirements may differ by country, state and/ or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked.

A Hierarchy of Controls seems to be common - the user should investigate:

- Reduction
- Reuse
- Recycling
- Disposal (if all else fails)

This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. Shelf life considerations should also be applied in making decisions of this type. Note that properties of a material may change in use, and recycling or reuse may not always be appropriate.

DO NOT allow wash water from cleaning equipment to enter drains. Collect all wash water for treatment before disposal.

- Recycle wherever possible.
- Consult manufacturer for recycling options or consult Waste Management Authority for disposal if no suitable treatment or disposal facility can be identified.
- Dispose of by: Burial in a licensed land-fill or Incineration in a licensed apparatus (after admixture with suitable combustible material)
- Decontaminate empty containers. Observe all label safeguards until containers are cleaned and destroyed.

#### Section 14 - TRANSPORTATION INFORMATION

NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS: DOT, IATA, IMDG

# **Section 15 - REGULATORY INFORMATION**

(3,4-dihydroxy-5-nitrobenzylidene)malonitrile (CAS: 116313-73-6) is found on the following regulatory lists;

"US - Hawaii Air Contaminant Limits", "US - Oregon Permissible Exposure Limits (Z3)", "US OSHA Permissible Exposure Levels (PELs) - Table Z3"

#### Section 16 - OTHER INFORMATION

#### LIMITED EVIDENCE

- Ingestion may produce health damage\*.
- Cumulative effects may result following exposure\*.
- May possibly affect fertility\*.\* (limited evidence).

Reasonable care has been taken in the preparation of this information, but the author makes no warranty of merchantability or any other warranty, expressed or implied, with respect to this information. The author makes no representations and assumes no liability for any direct, incidental or consequential damages resulting from its use. For additional technical information please call our toxicology department on +800 CHEMCALL.

- Classification of the mixture and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references. A list of reference resources used to assist the committee may be found at: www.chemwatch.net/references.
- The (M)SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

This document is copyright. Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH. TEL (+61 3) 9572 4700.

Issue Date: Feb-24-2010 Print Date:Apr-21-2010