Retinoic Acid, all trans

sc-200898

Material Safety Data Sheet

Hazard Alert Code Key:

EXTREME | HIGH | MODERATE | LOW

Section 1 - CHEMICAL PRODUCT AND COMPANY IDENTIFICATION

PRODUCT NAME
Retinoic Acid, all trans

STATEMENT OF HAZARDOUS NATURE

NFPA

SUPPLIER
Company: Santa Cruz Biotechnology, Inc.
Address:
2145 Delaware Ave
Santa Cruz, CA 95060
Telephone: 800.457.3801 or 831.457.3800
Emergency Tel: CHEMWATCH: From within the US and Canada: 877-715-9305
Emergency Tel: From outside the US and Canada: +800 2436 2255 (1-800-CHEMCALL) or call +613 9573 3112

PRODUCT USE
A Vitamin A derivative used in medicine as a topical keratolytic treatment. Appears to stimulate the epithelium to produce horny cells at a faster rate and to reduce their cohesion, possibly by altering the synthesis or quality of the cement substance which binds horny layers into impactions. [Martindale] Tretinoin is used primarily in the treatment of acne vulgaris and a number of other skin disorders, including psoriasis. Usually given by mouth. Dye

SYNONYMS
C20H28O2, "retinoic acid, all-trans-", "all-trans-Vitamin A acid", "3, 7-dimethyl-9-(2, 6, 6-trimethyl-1-cyclohexen-1-yl)-2, 4, 6, 8-", "3, 7-dimethyl-9-(2, 6, 6-trimethyl-1-cyclohexen-1-yl)-2, 4, 6, 8-", "nonatetraenoic acid", "2, 4, 6, 8-nonatetraenoic acid", ", 2, 4, 6, 8-nonatetraenoic acid", ", 3, 7-dimethyl-9-(2, 6, 6-trimethyl-1-cyclohexen-1-yl)-", "3, 7-dimethyl-9-(2, 6, 6-trimethyl-1-cyclohexen-1-yl)-", "beta-retinoic acid", "trans-retinoic acid", "all-trans-retinoic acid", "beta-all-trans-retinoic acid", Aberel, Airol, Aknoten, Epi-Aberel, Dermairol

Section 2 - HAZARDS IDENTIFICATION

CANADIAN WHMIS SYMBOLS

EMERGENCY OVERVIEW
RISK
Harmful if swallowed.
Irritating to skin.
Possible risk of harm to the unborn child.
Toxic to aquatic organisms, may cause long-term adverse effects in the aquatic environment.
POTENTIAL HEALTH EFFECTS

ACUTE HEALTH EFFECTS

SWALLOWED
- Accidental ingestion of the material may be harmful; animal experiments indicate that ingestion of less than 150 gram may be fatal or may produce serious damage to the health of the individual.
- Retinoid poisoning, as characterised by Vitamin A intoxication, may occur at high doses and is characterised by sedation, headache, irritability, papilloedema (oedema of the optic disk), and a generalised peeling of the skin. Although vitamin A is useful in preventing and treating chemical sensitivity, many chemically sensitive individuals, especially those who exhibit formaldehyde sensitivity, cannot tolerate it following oral administration. Retinoids are frequently produced, in the organism, as a result of carotenoid metabolism.

- Retinoids such as etretinate and isotretinoin, taken in therapeutic doses, may produce dryness of the mucous membranes, sometimes with erosion, involving the lips (cheilitis), mouth, conjunctiva (sometimes causing conjunctivitis), and nasal mucosa and epistaxis (rarely causing epistaxis). Other symptoms may include flare-up of acme, peeling of the palms, soles and fingertips, rhinorrhea, nosebleed, gingival bleeding, nail fragility, easy sunburning, fever and mild headache. Ocular defects may include problems with night vision, and alterations in colour perception. Musculoskeletal effects include aching joints and backache. Neurological symptoms include fatigue, minor depression, and insomnia. Decreased libido and menstrual irregularities have been reported in etretinate therapies. Liver and kidney dysfunction has been suggested after abnormal laboratory tests and following the appearance of calcified tendons and ligaments in the ankles, pelvis, and knees; hepatitis has been reported in a significant number of patients (1.5%). Dryness of the skin may result in scaling, thinning, pruritus, exfoliation, and erythema. Thinning of the hair or alopecia may occur by the fourth week of etretinate treatment. Skeletal hyperostosis, benign intracranial hypertension, musculoskeletal pain, gastrointestinal effects and paronychia have also occurred. Serum levels of hepatic enzymes and triglyceride concentrations may be elevated. Isotretinoin therapy has produced corneal opacities and premature epiphyseal closure. Such therapy has also been associated with skin infection and an inflammatory bowel syndrome.

EYE
- Although the material is not thought to be an irritant, direct contact with the eye may cause transient discomfort characterized by tearing or conjunctival redness (as with windburn). Slight abrasive damage may also result. The material may produce foreign body irritation in certain individuals.

SKIN
- The material may cause mild but significant inflammation of the skin either following direct contact or after a delay of some time. Repeated exposure can cause contact dermatitis which is characterized by redness, swelling and blistering.
- Skin contact with the material may damage the health of the individual; systemic effects may result following absorption.
- Open cuts, abraded or irritated skin should not be exposed to this material.
- Entry into the blood-stream, through, for example, cuts, abrasions or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected.

INHALED
- The material is not thought to produce respiratory irritation (as classified using animal models). Nevertheless inhalation of dusts, or fume, especially for prolonged periods, may produce respiratory discomfort and occasionally, distress.
- Inhalation of dusts, generated by the material during the course of normal handling, may be damaging to the health of the individual.
- Persons with impaired respiratory function, airway diseases and conditions such as emphysema or chronic bronchitis, may incur further disability if excessive concentrations of particulate are inhaled.

CHRONIC HEALTH EFFECTS
- Results in experiments suggest that this material may cause disorders in the development of the embryo or fetus, even when no signs of poisoning show in the mother.
- Limited evidence suggests that repeated or long-term occupational exposure may produce cumulative health effects involving organs or biochemical systems.

There is limited evidence that, skin contact with this product is more likely to cause a sensitization reaction in some persons compared to the general population.

Long term exposure to high dust concentrations may cause changes in lung function i.e. pneumoconiosis; caused by particles less than 0.5 micron penetrating and remaining in the lung. Prime symptom is breathlessness; lung shadows show on X-ray. Prolonged overdose of Vitamin A is associated with fatigue, irritability, loss of weight and appetite, mild fever, increased amounts of urine, enlarged liver and spleen, hair loss, bleeding lips, thickening of skin and yellow pigmentation. Bone and joint pain may occur, and growth may be permanently arrested in children. There may be birth defects and loss of bone mineral associated with carotenoids.

Section 3 - COMPOSITION / INFORMATION ON INGREDIENTS

HAZARD RATINGS

<table>
<thead>
<tr>
<th></th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flammability</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Toxicity</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Body Contact</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Reactivity</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Chronic</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

NAME	CAS RN	%
tretinoin | 302-79-4 | >98
(13-trans-retinoic acid)

Section 4 - FIRST AID MEASURES
SWALLOWED

- IF SWALLOWED, REFER FOR MEDICAL ATTENTION, WHERE POSSIBLE, WITHOUT DELAY.
 - Where Medical attention is not immediately available or where the patient is more than 15 minutes from a hospital or unless instructed otherwise:
 - For advice, contact a Poisons Information Center or a doctor.
 - Urgent hospital treatment is likely to be needed.
 - If conscious, give water to drink.
 - INDUCE vomiting with fingers down the back of the throat, ONLY IF CONSCIOUS. Lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration.

 NOTE: Wear a protective glove when inducing vomiting by mechanical means.

- In the mean time, qualified first-aid personnel should treat the patient following observation and employing supportive measures as indicated by the patient’s condition.
- If the services of a medical officer or medical doctor are readily available, the patient should be placed in his/her care and a copy of the MSDS should be provided. Further action will be the responsibility of the medical specialist.
- If medical attention is not available on the worksite or surroundings send the patient to a hospital together with a copy of the MSDS.

EYE

- If this product comes in contact with the eyes:
 - Wash out immediately with fresh running water.
 - Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids.
 - If pain persists or recurs seek medical attention.
 - Removal of contact lenses after an eye injury should only be undertaken by skilled personnel.

SKIN

- If skin contact occurs:
 - Immediately remove all contaminated clothing, including footwear
 - Flush skin and hair with running water (and soap if available).
 - Seek medical attention in event of irritation.

INHALED

- If fumes or combustion products are inhaled remove from contaminated area.
- Lay patient down. Keep warm and rested.
- Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures.
- Apply artificial respiration if not breathing, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained. Perform CPR if necessary.
- Transport to hospital, or doctor.

NOTES TO PHYSICIAN

- for poisons (where specific treatment regime is absent):

 BASIC TREATMENT

 - Establish a patent airway with suction where necessary.
 - Watch for signs of respiratory insufficiency and assist ventilation as necessary.
 - Administer oxygen by non-rebreather mask at 10 to 15 l/min.
 - Monitor and treat, where necessary, for pulmonary edema.
 - Monitor and treat, where necessary, for shock.
 - Anticipate seizures.
 - DO NOT use emetics. Where ingestion is suspected rinse mouth and give up to 200 ml water (5 ml/kg recommended) for dilution where patient is able to swallow, has a strong gag reflex and does not drool.

 ADVANCED TREATMENT

 - Consider orotracheal or nasotracheal intubation for airway control in unconscious patient or where respiratory arrest has occurred.
 - Positive-pressure ventilation using a bag-valve mask might be of use.
 - Monitor and treat, where necessary, for arrhythmias.
 - Start an IV D5W TKO. If signs of hypovolemia are present use lactated Ringers solution. Fluid overload might create complications.
 - Drug therapy should be considered for pulmonary edema.
 - Hypotension with signs of hypovolemia requires the cautious administration of fluids. Fluid overload might create complications.
 - Treat seizures with diazepam.
 - Proparacaine hydrochloride should be used to assist eye irrigation.

 BRONSTEIN, A.C. and CURRANCE, P.L.

 EMERGENCY CARE FOR HAZARDOUS MATERIALS EXPOSURE: 2nd Ed. 1994.

 Treat symptomatically.

Section 5 - FIRE FIGHTING MEASURES

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vapour Pressure (mmHG)</td>
<td>Not applicable.</td>
</tr>
<tr>
<td>Upper Explosive Limit (%)</td>
<td>Not available.</td>
</tr>
<tr>
<td>Specific Gravity (water=1)</td>
<td>Not available.</td>
</tr>
<tr>
<td>Lower Explosive Limit (%)</td>
<td>Not available.</td>
</tr>
</tbody>
</table>
EXTINGUISHING MEDIA
- Foam.
- Dry chemical powder.
- BCF (where regulations permit).
- Carbon dioxide.
- Water spray or fog - Large fires only.

FIRE FIGHTING
- Alert Emergency Responders and tell them location and nature of hazard.
- Wear breathing apparatus plus protective gloves.
- Prevent, by any means available, spillage from entering drains or water course.
- Use water delivered as a fine spray to control fire and cool adjacent area.
- DO NOT approach containers suspected to be hot.
- Cool fire exposed containers with water spray from a protected location.
- If safe to do so, remove containers from path of fire.
- Equipment should be thoroughly decontaminated after use.

GENERAL FIRE HAZARDS/HAZARDOUS COMBUSTIBLE PRODUCTS
- Combustible solid which burns but propagates flame with difficulty.
- Avoid generating dust, particularly clouds of dust in a confined or unventilated space as dusts may form an explosive mixture with air, and any source of ignition, i.e. flame or spark, will cause fire or explosion. Dust clouds generated by the fine grinding of the solid are a particular hazard; accumulations of fine dust may burn rapidly and fiercely if ignited.
- Dry dust can be charged electrostatically by turbulence, pneumatic transport, pouring, in exhaust ducts and during transport.
- Build-up of electrostatic charge may be prevented by bonding and grounding.
- Powder handling equipment such as dust collectors, dryers and mills may require additional protection measures such as explosion venting.
- Combustion products include: carbon monoxide (CO), carbon dioxide (CO2), other pyrolysis products typical of burning organic material.

FIRE INCOMPATIBILITY
- Avoid contamination with oxidizing agents i.e. nitrates, oxidizing acids, chlorine bleaches, pool chlorine etc. as ignition may result.

PERSONAL PROTECTION
Glasses: Chemical goggles.
Gloves:
Respirator: Particulate

Section 6 - ACCIDENTAL RELEASE MEASURES

MINOR SPILLS
- Environmental hazard - contain spillage.
- Clean up waste regularly and abnormal spills immediately.
- Avoid breathing dust and contact with skin and eyes.
- Wear protective clothing, gloves, safety glasses and dust respirator.
- Use dry clean up procedures and avoid generating dust.
- Vacuum up or sweep up. NOTE: Vacuum cleaner must be fitted with an exhaust micro filter (HEPA type) (consider explosion-proof machines designed to be grounded during storage and use).
- Dampen with water to prevent dusting before sweeping.
- Place in suitable containers for disposal.

MAJOR SPILLS
- Environmental hazard - contain spillage.
- Moderate hazard.
- CAUTION: Advise personnel in area.
- Alert Emergency Responders and tell them location and nature of hazard.
- Control personal contact by wearing protective clothing.
- Prevent, by any means available, spillage from entering drains or water courses.
- Recover product wherever possible.
- IF DRY: Use dry clean up procedures and avoid generating dust. Collect residues and place in sealed plastic bags or other containers for disposal. IF WET: Vacuum/shovel up and place in labelled containers for disposal.
- ALWAYS: Wash area down with large amounts of water and prevent runoff into drains.
- If contamination of drains or waterways occurs, advise emergency services.

PROTECTIVE ACTIONS FOR SPILL
Footnotes

1. **PROTECTIVE ACTION ZONE** is defined as the area in which people are at risk of harmful exposure. This zone assumes that random changes in wind direction confines the vapour plume to an area within 30 degrees on either side of the predominant wind direction, resulting in a crosswind protective action distance equal to the downwind protective action distance.

2. **PROTECTIVE ACTIONS** should be initiated to the extent possible, beginning with those closest to the spill and working away from the site in the downwind direction. Within the protective action zone a level of vapour concentration may exist resulting in nearly all unprotected persons becoming incapacitated and unable to take protective action and/or incurring serious or irreversible health effects.

3. **INITIAL ISOLATION ZONE** is determined as an area, including upwind of the incident, within which a high probability of localised wind reversal may expose nearly all persons without appropriate protection to life-threatening concentrations of the material.

4. **SMALL SPILLS** involve a leaking package of 200 litres (55 US gallons) or less, such as a drum (jerrican or box with inner containers). Larger packages leaking less than 200 litres and compressed gas leaking from a small cylinder are also considered "small spills". **LARGE SPILLS** involve many small leaking packages or a leaking package of greater than 200 litres, such as a cargo tank, portable tank or a "one-tonne" compressed gas cylinder.

6. **IERG information** is derived from CANUTEC - Transport Canada.

ACUTE EXPOSURE GUIDELINE LEVELS (AEGL) (in ppm)

AEGL 1: The airborne concentration of a substance above which it is predicted that the general population, including susceptible individuals, could experience notable discomfort, irritation, or certain asymptomatic nonsensory effects. However, the effects are not disabling and are transient and reversible upon cessation of exposure.

AEGL 2: The airborne concentration of a substance above which it is predicted that the general population, including susceptible individuals, could experience irreversible or other serious, long-lasting adverse health effects or an impaired ability to escape.

AEGL 3: The airborne concentration of a substance above which it is predicted that the general population, including susceptible individuals, could experience life-threatening health effects or death.

Section 7 - HANDLING AND STORAGE

Procedure for Handling

- Avoid all personal contact, including inhalation.
- Wear protective clothing when risk of exposure occurs.
- Use in a well-ventilated area.
- Prevent concentration in hollows and sumps.
- DO NOT enter confined spaces until atmosphere has been checked.
- DO NOT allow material to contact humans, exposed food or food utensils.
- Avoid contact with incompatible materials.
- When handling, DO NOT eat, drink or smoke.
- Keep containers securely sealed when not in use.
- Avoid physical damage to containers.
- Always wash hands with soap and water after handling.
- Work clothes should be laundered separately.
- Launder contaminated clothing before re-use.
- Use good occupational work practice.
- Observe manufacturer's storing and handling recommendations.
- Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions are maintained.

Empty containers may contain residual dust which has the potential to accumulate following settling. Such dusts may explode in the presence of an appropriate ignition source.

- Do NOT cut, drill, grind or weld such containers.
- In addition ensure such activity is not performed near full, partially empty or empty containers without appropriate workplace safety authorisation or permit.

Recommended Storage Methods

- Glass container.
- Polyethylene or polypropylene container.
- Check all containers are clearly labelled and free from leaks.

Storage Requirements

- Observe manufacturer’s storing and handling recommendations.
Section 8 - EXPOSURE CONTROLS / PERSONAL PROTECTION

EXPOSURE CONTROLS

<table>
<thead>
<tr>
<th>Source</th>
<th>Material</th>
<th>TWA ppm</th>
<th>TWA mg/m³</th>
<th>STEL ppm</th>
<th>STEL mg/m³</th>
<th>Peak ppm</th>
<th>Peak mg/m³</th>
<th>TWA F/CC</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Canada - Alberta Occupational Exposure Limits</td>
<td>tretinoin (Turpentine and selected monoterpenes)</td>
<td>20</td>
<td>111</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MATERIAL DATA

TRETINOIN:

- It is the goal of the ACGIH (and other Agencies) to recommend TLVs (or their equivalent) for all substances for which there is evidence of health effects at airborne concentrations encountered in the workplace.
- At this time no TLV has been established, even though this material may produce adverse health effects (as evidenced in animal experiments or clinical experience). Airborne concentrations must be maintained as low as is practically possible and occupational exposure must be kept to a minimum.

NOTE: The ACGIH occupational exposure standard for Particles Not Otherwise Specified (P.N.O.S) does NOT apply.

Sensory irritants are chemicals that produce temporary and undesirable side-effects on the eyes, nose or throat. Historically occupational exposure standards for these irritants have been based on observation of workers' responses to various airborne concentrations. Present day expectations require that nearly every individual should be protected against even minor sensory irritation and exposure standards are established using uncertainty factors or safety factors of 5 to 10 or more. On occasion animal no-observable-effect-levels (NOEL) are used to determine these limits where human results are unavailable. An additional approach, typically used by the TLV committee (USA) in determining respiratory standards for this group of chemicals, has been to assign ceiling values (TLV C) to rapidly acting irritants and to assign short-term exposure limits (TLV STELs) when the weight of evidence from irritation, bioaccumulation and other endpoints combine to warrant such a limit. In contrast the MAK Commission (Germany) uses a five-category system based on intensive odour, local irritation, and elimination half-life. However this system is being replaced to be consistent with the European Union (EU) Scientific Committee for Occupational Exposure Limits (SCOEL); this is more closely allied to that of the USA.

OSHA (USA) concluded that exposure to sensory irritants can:

- cause inflammation
- cause increased susceptibility to other irritants and infectious agents
- lead to permanent injury or dysfunction
- permit greater absorption of hazardous substances and
- acclimate the worker to the irritant warning properties of these substances thus increasing the risk of overexposure.

Airborne particulate or vapor must be kept to levels as low as is practicably achievable given access to modern engineering controls and monitoring hardware. Biologically active compounds may produce idiosyncratic effects which are entirely unpredictable on the basis of literature searches and prior clinical experience (both recent and past).

PERSONAL PROTECTION

Consult your EHS staff for recommendations

EYE

- When handling very small quantities of the material eye protection may not be required.
- For laboratory, larger scale or bulk handling or where regular exposure in an occupational setting occurs:
 - Chemical goggles
 - Face shield. Full face shield may be required for supplementary but never for primary protection of eyes
 - Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lens or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation - lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59]

HANDS/FEET

- NOTE: The material may produce skin sensitization in predisposed individuals. Care must be taken, when removing gloves and other protective equipment, to avoid all possible skin contact.
Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include: such as:
- frequency and duration of contact,
- chemical resistance of glove material,
- glove thickness and
dexterity

Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739).
- If prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374) is recommended.
- When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374) is recommended.
- Contaminated gloves should be replaced.

Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.
- Rubber gloves (nitrile or low-protein, powder-free latex). Employees allergic to latex gloves should use nitrile gloves in preference.
- Double gloving should be considered.
- PVC gloves.
- Protective shoe covers.
- Head covering.

Experience indicates that the following polymers are suitable as glove materials for protection against undissolved, dry solids, where abrasive particles are not present.
- polychloroprene
- nitrile rubber
- butyl rubber
- fluorocaoutchouc
- polyvinyl chloride

Gloves should be examined for wear and/ or degradation constantly.

OTHER
- For quantities up to 500 grams a laboratory coat may be suitable.
- For quantities up to 1 kilogram a disposable laboratory coat or coverall of low permeability is recommended. Coveralls should be buttoned at collar and cuffs.
- For quantities over 1 kilogram and manufacturing operations, wear disposable coverall of low permeability and disposable shoe covers.
- For manufacturing operations, air-supplied full body suits may be required for the provision of advanced respiratory protection.
- Eye wash unit.
- Ensure there is ready access to an emergency shower.
- For Emergencies: Vinyl suit

Respirators may be necessary when engineering and administrative controls do not adequately prevent exposures.
- The decision to use respiratory protection should be based on professional judgment that takes into account toxicity information, exposure measurement data, and frequency and likelihood of the worker's exposure - ensure users are not subject to high thermal loads which may result in heat stress or distress due to personal protective equipment (powered, positive flow, full face apparatus may be an option).
- Published occupational exposure limits, where they exist, will assist in determining the adequacy of the selected respiratory protection.
- Certified respirators will be useful for protecting workers from inhalation of particulates when properly selected and fit tested as part of a complete respiratory protection program.
- Use approved positive flow mask if significant quantities of dust becomes airborne.
- Try to avoid creating dust conditions.

RESPIRATOR
- Protection Factor | Half-Face Respirator | Full-Face Respirator | Powered Air Respirator
- 10 x PEL | P1 | - | PAPR-P1
 Air-line* | - | - |
- 50 x PEL | Air-line** | P2 | PAPR-P2
- 100 x PEL | - | P3 | -
- 100+ x PEL | Air-line* | - | -

* - Negative pressure demand ** - Continuous flow

Explanation of Respirator Codes:
Class 1 low to medium absorption capacity filters.
Class 2 medium absorption capacity filters.
Class 3 high absorption capacity filters.
PAPR Powered Air Purifying Respirator (positive pressure) cartridge.
Type AX for use against certain organic gases and vapors.
Type B for use against certain inorganic gases and other acid gases and vapors.
Type C for use against low boiling point organic compounds (less than 65°C).
Type D for use against sulfur dioxide and other acid gases and vapors.
Type E for use against ammonia and organic ammonia derivatives.
Class P1 intended for use against mechanically generated particulates of sizes most commonly encountered in industry, e.g. asbestos, silica.
Class P2 intended for use against both mechanically and thermally generated particulates, e.g. metal fume.
Class P3 intended for use against all particulates containing highly toxic materials, e.g. beryllium.

The local concentration of material, quantity and conditions of use determine the type of personal protective equipment required.

Use appropriate NIOSH-certified respirator based on informed professional judgement. In conditions where no reasonable estimate of exposure can be made, assume the exposure is in a concentration IDLH and use NIOSH-certified full face pressure demand SCBA with a minimum service life of 30 minutes, or a combination full facepiece pressure demand SAR with auxiliary self-contained air supply. Respirators provided only for escape from IDLH atmospheres shall be NIOSH-certified for
ENGINEERING CONTROLS

- Enclosed local exhaust ventilation is required at points of dust, fume or vapor generation.
- HEPA-terminated local exhaust ventilation should be considered at points of generation of dust, fumes or vapors.
- Barrier protection or laminar flow cabinets should be considered for laboratory scale handling.

The need for respiratory protection should also be assessed where incidental or accidental exposure is anticipated: Dependent on levels of contamination, PAPR, full face air purifying devices with P2 or P3 filters or air supplied respirators should be evaluated.

Fume-hoods and other open-face containment devices are acceptable when face velocities of at least 1 m/s (200 feet/minute) are achieved. Partitions, barriers, and other partial containment technologies are required to prevent migration of the material to uncontrolled areas. For non-routine emergencies maximum local and general exhaust are necessary. Air contaminants generated in the workplace possess varying “escape” velocities which, in turn, determine the “capture velocities” of fresh circulating air required to effectively remove the contaminant.

The Type of Contaminant:

<table>
<thead>
<tr>
<th>Type of Contaminant</th>
<th>Air Speed</th>
</tr>
</thead>
<tbody>
<tr>
<td>solvent, vapors, etc. evaporation from tank (in still air)</td>
<td>0.25-0.5 m/s (50-100 f/min.)</td>
</tr>
<tr>
<td>aerosols, fumes from pouring operations, intermittent container filling, low speed conveyer transfers (released at low velocity into zone of active generation)</td>
<td>0.5-1 m/s (100-200 f/min.)</td>
</tr>
<tr>
<td>direct spray, drum filling, conveyor loading, crusher dusts, gas discharge (active generation into zone of rapid air motion)</td>
<td>1-2.5 m/s (200-500 f/min.)</td>
</tr>
</tbody>
</table>

Within each range the appropriate value depends on:

<table>
<thead>
<tr>
<th>Lower end of the range</th>
<th>Upper end of the range</th>
</tr>
</thead>
<tbody>
<tr>
<td>1: Room air currents minimal or favourable to capture</td>
<td>1: Disturbing room air currents</td>
</tr>
<tr>
<td>2: Contaminants of low toxicity or of nuisance value only.</td>
<td>2: Contaminants of high toxicity</td>
</tr>
<tr>
<td>3: Intermittent, low production.</td>
<td>3: High production, heavy use</td>
</tr>
<tr>
<td>4: Large hood or large air mass in motion</td>
<td>4: Small hood-local control only</td>
</tr>
</tbody>
</table>

Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 1-2.5 m/s (200-600 f/min.) for extraction of gases discharged 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used.

Section 9 - PHYSICAL AND CHEMICAL PROPERTIES

PHYSICAL PROPERTIES

- Solid.
- Does not mix with water.

<table>
<thead>
<tr>
<th>State</th>
<th>Melting Range (°F)</th>
<th>Boiling Range (°F)</th>
<th>Flash Point (°F)</th>
<th>Decomposition Temp (°F)</th>
<th>Autoignition Temp (°F)</th>
<th>Upper Explosive Limit (%)</th>
<th>Lower Explosive Limit (%)</th>
<th>Volatile Component (%vol)</th>
<th>APPEARANCE</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Molecular Weight</th>
<th>Viscosity</th>
<th>Solubility in water (g/L)</th>
<th>pH (1% solution)</th>
<th>Vapour Pressure (mmHG)</th>
<th>pH (as supplied)</th>
<th>Specific Gravity (water=1)</th>
<th>Relative Vapor Density (air=1)</th>
<th>Evaporation Rate</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>300.48</td>
<td>Not Applicable</td>
<td>Immiscible</td>
<td>Not applicable</td>
<td>Not applicable</td>
<td>Not applicable</td>
<td>Not available.</td>
<td>Not applicable</td>
<td>Not applicable</td>
<td>Not applicable</td>
<td></td>
</tr>
</tbody>
</table>

CONDITIONS CONTRIBUTING TO INSTABILITY

- Presence of incompatible materials.
- Product is considered stable.
- Hazardous polymerization will not occur.

STORAGE INCOMPATIBILITY

- The very feature which confers the important properties on carotenoids (antioxidants) also makes them unstable. The structures break down with attack by free radicals, such as singlet molecular oxygen and other reactive species. The common degradation pathways are isomerisation, oxidation and fragmentation of the carotenoid molecules. Heat, light and acids promote isomerisation of the trans-form of carotenoids to the cis-form. Light, enzymes, pro-oxidant metals and co-oxidation with unsaturated lipids, on the other hand, induce oxidation. Pyrolysis occurs under intense heat with expulsion of low molecular weight molecules.
- The fact that carotenoid pigments are made up of a system of conjugated double bonds makes them vulnerable to heat. When intense heat is applied, the tine(?) structures are cleaved and molecular reactions occur, involving the double bonds. Two types of thermal degradation products are formed: a volatile fraction of low molecular weight molecules which is vapourised,
and a non-volatile fraction from the larger fragments of the carotene molecules after cleaving off the volatile fraction. The volatile fraction may include 2,6-dimethylnaphthalene, toluene, m-xylene.

During carotene oxidation a catalytic agent is formed which causes accelerated deterioration. A strong smell of ionone develops upon the auto-oxidation (the end-rings of the carotene molecule split off).

Segregate from alcohol, water.

Avoid strong acids.

Avoid reaction with oxidizing agents.

For incompatible materials - refer to Section 7 - Handling and Storage.

Section 11 - TOXICOLOGICAL INFORMATION

tretinoin

TOXICITY AND IRRITATION

- unless otherwise specified data extracted from RTECS - Register of Toxic Effects of Chemical Substances.

<table>
<thead>
<tr>
<th>TOXICITY</th>
<th>IRRITATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral (rat) LD50: 1960 mg/kg</td>
<td>Skin (human): 525 mg/21d - I-Mild</td>
</tr>
<tr>
<td>Intraperitoneal (rat) LD50: 96 mg/kg</td>
<td></td>
</tr>
<tr>
<td>Subcutaneous (rat) LD50: 53 mg/kg</td>
<td></td>
</tr>
<tr>
<td>Intravenous (rat) LD50: 78 mg/kg</td>
<td></td>
</tr>
</tbody>
</table>

- The material may cause skin irritation after prolonged or repeated exposure and may produce on contact skin redness, swelling, the production of vesicles, scaling and thickening of the skin.

Exposure to the material for prolonged periods may cause physical defects in the developing embryo (teratogenesis).

Human lymphocyte mutagen

Reproductive effector in monkeys

Neoplastic by RTECS criteria

Section 12 - ECOLOGICAL INFORMATION

Refer to data for ingredients, which follows:

TRETINOIN:

- Toxic to aquatic organisms.
- Do NOT allow product to come in contact with surface waters or to intertidal areas below the mean high water mark. Do not contaminate water when cleaning equipment or disposing of equipment wash-waters.

Wastes resulting from use of the product must be disposed of on site or at approved waste sites.

- May cause long-term adverse effects in the aquatic environment.
- Substances containing unsaturated carbons are ubiquitous in indoor environments. They result from many sources (see below). Most are reactive with environmental ozone and many produce stable products which are thought to adversely affect human health. The potential for surfaces in an enclosed space to facilitate reactions should be considered.

Source of unsaturated substances

Unsaturated substances (Reactive Emissions)

- Isoprene, nitric oxide, squalene, unsaturated sterols, oleic acid and other unsaturated fatty acids, unsaturated oxidation products

Major Stable Products produced following reaction with ozone.

- Methacrolein, methyl vinyl ketone, nitrogen dioxide, acetone, 6MHO, geranyl acetone, 4OPA, formaldehyde, nonanol, decanal, 9-oxo-nonanoic acid, azelaic acid, nonanoic acid.

Source of unsaturated substances

- Occupants (exhaled breath, ski oils, personal care products)

- Soft woods, wood flooring, including cypress, cedar and silver fir boards, houseplants

- Carpets and carpet backing

- Linoleum and paints/polishes containing linseed oil

- Latex paint

- Certain cleaning products, polishes, waxes, air fresheners

- Natural rubber adhesive

- Photocopier toner, printed paper, styrene polymers

- Environmental tobacco smoke

- Soiled clothing, fabrics, bedding

Unsaturation

- Linoleic acid, linolenic acid

- Propanal, hexanal, nonanal, 2-heptanal, 2-nonenal, 2-decenal, 1-pentene-3-one, propionic acid, n-butyric acid

- Formaldehyde, acetaldehyde, benzaldehyde, hexanal, nonanal, 2-nonenal

- Propanal, hexanal, nonanal, 2-heptanal, 2-nonenal, 2-decenal, 1-pentene-3-one, propionic acid, n-butyric acid

- Formaldehyde, methacrolein, methyl vinyl ketone

- Formaldehyde, acetaldehyde, glycoaldehyde, formic acid, acetic acid, hydrogen and organic peroxides, acetone, benzaldehyde, 4-hydroxy-4-methyl-5-hexen-1-ol, 5-ethenyl-dihydro-5-methyl-2(3H)-furanone, 4-AMC, SOAs including ultratine particles

- Formaldehyde, methacrolein, benzaldehyde, hexanal, nonanal, 2-nonenal

- Formaldehyde, acetaldehyde, glycoaldehyde, formic acid, acetic acid, hydrogen and organic peroxides, acetone, benzaldehyde, 4-hydroxy-4-methyl-5-hexen-1-ol, 5-ethenyl-dihydro-5-methyl-2(3H)-furanone, 4-AMC, SOAs including ultratine particles

- Formaldehyde, methacrolein, methyl vinyl ketone
Soiled particle filters
Unsaturated fatty acids from plant waxes, leaf litter, and other vegetative debris; soot; diesel particles; 9-oxo-nonanoic acid and other oxo-acids; compounds with mixed functional groups (=O, -OH, and -COOH)

Ventilation ducts and duct liners
Unsaturated fatty acids and esters, unsaturated oils, neoprene

"Urban grime"
Polycyclic aromatic hydrocarbons

Perfumes, colognes, essential oils (e.g. lavender, eucalyptus, tea tree)
Limonen, alpha-pinene, linalol, linalyl acetate, terpinene-4-ol, gamma-terpinene

Overall home emissions
Limonen, alpha-pinene, styrene

Ventilation ducts and duct liners
Unsaturated fatty acids and esters, unsaturated oils, neoprene

"Urban grime"
Polycyclic aromatic hydrocarbons

Perfumes, colognes, essential oils (e.g. lavender, eucalyptus, tea tree)
Limonen, alpha-pinene, linalol, linalyl acetate, terpinene-4-ol, gamma-terpinene

Overall home emissions
Limonen, alpha-pinene, styrene

Abbreviations: 4-AMC, 4-acetyl-1-methylcyclohexene; 6MHQ, 6-methyl-5-heptene-2-one, 4OPA, 4-oxopentanal, SOA, Secondary Organic Aerosols
Reference: Charles J. Weschler; Environmental Health Perspectives, Vol 114, October 2006.

Retinoids, low molecular weight lipophilic derivatives of vitamin A, can have profound effects upon the development of various embryonic systems especially amphibians in which retinoic acid receptors have been hypothesized to play a role in frog deformities. Although naturally occurring, retinoids have been used for a number of years for a wide array of medical conditions. Although retinoids and retinoic acids would also be expected to be photolabile (and therefore not persistent), their products may also still possess receptor activity. For example, methoprene, an insectidal synthetic retinoic acid mimic, is photolabile and yields numerous photo-products, some of which also elicit strong retinoic acid activity.

DO NOT discharge into sewer or waterways.

Section 13 - DISPOSAL CONSIDERATIONS

Disposal Instructions
All waste must be handled in accordance with local, state and federal regulations. Puncture containers to prevent re-use and bury at an authorized landfill. Legislation addressing waste disposal requirements may differ by country, state and/ or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked. A Hierarchy of Controls seems to be common - the user should investigate:
- Reduction
- Reuse
- Recycling
- Disposal (if all else fails)

This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. Shelf life considerations should also be applied in making decisions of this type. Note that properties of a material may change in use, and recycling or reuse may not always be appropriate.

- Recycle wherever possible.
- Consult manufacturer for recycling options or consult Waste Management Authority for disposal if no suitable treatment or disposal facility can be identified.
- Dispose of by: Burial in a licensed land-fill or Incineration in a licensed apparatus (after admixture with suitable combustible material)
- Decontaminate empty containers. Observe all label safeguards until containers are cleaned and destroyed.

Section 14 - TRANSPORTATION INFORMATION

DOT:

Symbols: G Hazard class or Division: 9
Identification Numbers: UN3077 PG: III
Label Codes: 9 Special provisions: 8, 146, 335, B54, IB8, IP3, N20, T1, TP33
Packaging: Exceptions: 155 Packaging: Non-bulk: 213
Packaging: Exceptions: 155 Quantity limitations: Passenger aircraft/ rail: No limit
Quantity Limitations: Cargo aircraft only: No limit Vessel stowage: Location: A
Vessel stowage: Other: None

Hazardous materials descriptions and proper shipping names:
Environmentally hazardous substance, solid, n.o.s

Air Transport IATA:

ICAO/IATA Class:	9	ICAO/IATA Subrisk:	䵂
UN/ID Number:	3077	Packing Group:	III
Special provisions:	A97		

Shipping Name: ENVIRONMENTALLY HAZARDOUS SUBSTANCE, SOLID, N.O.S. *(CONTAINS TRETINOIN)*

Maritime Transport IMDG:

IMDG Class:	9	IMDG Subrisk:	None
UN Number:	3077	Packing Group:	III
EMS Number:	F-A,S-F	Special provisions:	274 909 944
Limited Quantities:	5 kg		

Shipping Name: ENVIRONMENTALLY HAZARDOUS SUBSTANCE, SOLID, N.O.S.(contains tretinoin)

Section 15 - REGULATORY INFORMATION

Tretinoin (CAS: 302-79-4) is found on the following regulatory lists:
- "Canada Domestic Substances List (DSL)," "US - California Air Toxics ""Hot Spots"" List (Assembly Bill 2588) Substances which need not be reported unless manufactured by the facility"; "US - California Proposition 65 - Priority List for the Development of MADLs for Chemicals Causing Reproductive Toxicity"; "US - California Proposition 65 - Reproductive Toxicity"; "US - Maine Chemicals of High Concern List"; "US Toxic Substances Control Act (TSCA) - Inventory".

Section 16 - OTHER INFORMATION

LIMITED EVIDENCE

- Inhalation and/or skin contact may produce health damage*.
- Cumulative effects may result following exposure*.
- Possible skin sensitizer*.
* (limited evidence).

Germany Hazard classification and labelling of medicines with antineoplastic effects (ATC Code L01 and L02)

<table>
<thead>
<tr>
<th>INN</th>
<th>CAS</th>
<th>Danger</th>
<th>CMR effects</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tretinoin</td>
<td>302-79-4</td>
<td>T, N</td>
<td>R 61</td>
<td>R 38 R 51/53</td>
</tr>
</tbody>
</table>

Reasonable care has been taken in the preparation of this information, but the author makes no warranty of merchantability or any other warranty, expressed or implied, with respect to this information. The author makes no representations and assumes no liability for any direct, incidental or consequential damages resulting from its use. For additional technical information please call our toxicology department on +800 CHEMCALL.

- Classification of the mixture and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references. A list of reference resources used to assist the committee may be found at: www.chemwatch.net/references.
- The (M)SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

This document is copyright. Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH. TEL (+61 3) 9572 4700.

Issue Date: Feb-6-2009
Print Date: Apr-21-2010