8-Hydroxy-DPAT • HBr

sc-201129

Material Safety Data Sheet

The Power to Question

Hazard Alert Code Key:

EXTREME

HIGH

MODERATE

LOW

Section 1 - CHEMICAL PRODUCT AND COMPANY IDENTIFICATION

PRODUCT NAME

8-Hydroxy-DPAT • HBr

STATEMENT OF HAZARDOUS NATURE

CONSIDERED A HAZARDOUS SUBSTANCE ACCORDING TO OSHA 29 CFR 1910.1200.

NFPA

SUPPLIER

Santa Cruz Biotechnology, Inc. 2145 Delaware Avenue Santa Cruz, California 95060 800.457.3801 or 831.457.3800

EMERGENCY

ChemWatch

Within the US & Canada: 877-715-9305 Outside the US & Canada: +800 2436 2255 (1-800-CHEMCALL) or call +613 9573 3112

SYNONYMS

C16-H26-Br-N-O, 8-OH-DPAT, 8-hydroxy-DPAT, "8-hydroxydipropylaminotetralin hydrobromide", "2-dipropylamino-8-hydroxy-1, 2, 3, 4-tetrahydronaphthalene hydrobromide", "serotonin receptor agonist"

Section 2 - HAZARDS IDENTIFICATION

CHEMWATCH HAZARD RATINGS

		Min	Max
Flammability:	1		
Toxicity:	2		
Body Contact:	2		Min/Nil=0 Low=1
Reactivity:	1		Moderate=2
Chronic:	3		High=3 Extreme=4

CANADIAN WHMIS SYMBOLS

EMERGENCY OVERVIEW

RISK

Irritating to eyes, respiratory system and skin. Harmful to aquatic organisms.

POTENTIAL HEALTH EFFECTS

ACUTE HEALTH EFFECTS

SWALLOWED

- Accidental ingestion of the material may be damaging to the health of the individual.
- Bromide poisoning causes intense vomiting so the dose is often removed.

Effects include drowsiness, irritability, inco-ordination, vertigo, confusion, mania, hallucinations and coma.

EYE

■ This material can cause eye irritation and damage in some persons.

SKIN

- This material can cause inflammation of the skin oncontact in some persons.
- The material may accentuate any pre-existing dermatitis condition.
- Skin contact is not thought to have harmful health effects, however the material may still produce health damage following entry through wounds, lesions or abrasions.
- Open cuts, abraded or irritated skin should not be exposed to this material.
- Entry into the blood-stream, through, for example, cuts, abrasions or lesions, may produce systemic injury with harmful effects.

Examine the skin prior to the use of the material and ensure that any external damage is suitably protected.

INHALED

■ The material can cause respiratory irritation in some persons.

The body's response to such irritation can cause further lung damage.

■ Persons with impaired respiratory function, airway diseases and conditions such as emphysema or chronic bronchitis, may incur further disability if excessive concentrations of particulate are inhaled.

CHRONIC HEALTH EFFECTS

■ Long-term exposure to respiratory irritants may result in disease of the airways involving difficult breathing and related systemic problems. Limited evidence suggests that repeated or long-term occupational exposure may produce cumulative health effects involving organs or biochemical systems.

There is some evidence that human exposure to the material may result in developmental toxicity. This evidence is based on animal studies where effects have been observed in the absence of marked maternal toxicity, or at around the same dose levels as other toxic effects but which are not secondary non-specific consequences of the other toxic effects.

Long term exposure to high dust concentrations may cause changes in lung function i.e. pneumoconiosis; caused by particles less than 0.5 micron penetrating and remaining in the lung.

Chronic intoxication with ionic bromides, historically, has resulted from medical use of bromides but not from environmental or occupational exposure; depression, hallucinosis, and schizophreniform psychosis can be seen in the absence of other signs of intoxication. Bromides may also induce sedation, irritability, agitation, delirium, memory loss, confusion, disorientation, forgetfulness (aphasias), dysarthria, weakness, fatigue, vertigo, stupor, coma, decreased appetite, nausea and vomiting, diarrhoea, hallucinations, an acne like rash on the face, legs and trunk, known as bronchoderma (seen in 25-30% of case involving bromide ion), and a profuse discharge from the nostrils (coryza). Ataxia and generalised hyperreflexia have also been observed. Correlation of neurologic symptoms with blood levels of bromide is inexact. The use of substances such as brompheniramine, as antihistamines, largely reflect current day usage of bromides; ionic bromides have been largely withdrawn from therapeutic use due to their toxicity. Several cases of foetal abnormalities have been described in mothers who took large doses of bromides during pregnancy.

Section 3 - COMPOSITION / INFORMATION ON INGREDIENTS

NAME	CAS RN	%
8-hydroxy-2-(di-n-propylamino)tetralin hydrobromide	87394-87-4	>98

Section 4 - FIRST AID MEASURES

SWALLOWED

· If swallowed do NOT induce vomiting. · If vomiting occurs, lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration.

EYE

■ If this product comes in contact with the eyes: · Wash out immediately with fresh running water. · Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids.

SKIN

■ If skin contact occurs: · Immediately remove all contaminated clothing, including footwear · Flush skin and hair with running water (and soap if available).

INHALED

· If fumes or combustion products are inhaled remove from contaminated area. · Lay patient down. Keep warm and rested.

NOTES TO PHYSICIAN

■ Treat symptomatically.

Section 5 - FIRE FIGHTING MEASURES					
Vapour Pressure (mmHG):	Negligible				
Upper Explosive Limit (%):	Not available.				
Specific Gravity (water=1):	Not available				
Lower Explosive Limit (%):	Not available				

EXTINGUISHING MEDIA

- · Water spray or fog.
- · Foam.

FIRE FIGHTING

- · Alert Emergency Responders and tell them location and nature of hazard.
- · Wear breathing apparatus plus protective gloves.

GENERAL FIRE HAZARDS/HAZARDOUS COMBUSTIBLE PRODUCTS

- · Combustible solid which burns but propagates flame with difficulty.
- · Avoid generating dust, particularly clouds of dust in a confined or unventilated space as dusts may form an explosive mixture with air, and any source of ignition, i.e. flame or spark, will cause fire or explosion. Dust clouds generated by the fine grinding of the solid are a particular hazard; accumulations of fine dust may burn rapidly and fiercely if ignited.

Combustion products include: carbon monoxide (CO), carbon dioxide (CO2), hydrogen bromide, nitrogen oxides (NOx), other pyrolysis products typical of burning organic material.

May emit poisonous fumes.

May emit corrosive fumes.

FIRE INCOMPATIBILITY

■ Avoid contamination with oxidizing agents i.e. nitrates, oxidizing acids,chlorine bleaches, pool chlorine etc. as ignition may result.

PERSONAL PROTECTION

Glasses:

Chemical goggles.

Gloves:

Respirator:

Particulate

Section 6 - ACCIDENTAL RELEASE MEASURES

MINOR SPILLS

- · Clean up waste regularly and abnormal spills immediately.
- · Avoid breathing dust and contact with skin and eyes.
- · Wear protective clothing, gloves, safety glasses and dust respirator.
- · Use dry clean up procedures and avoid generating dust.
- \cdot Vacuum up or sweep up. NOTE: Vacuum cleaner must be fitted with an exhaust micro filter (HEPA type) (consider explosion-proof machines designed to be grounded during storage and use).
- · Dampen with water to prevent dusting before sweeping.
- · Place in suitable containers for disposal.

MAJOR SPILLS

- Moderate hazard.
- · CAUTION: Advise personnel in area.
- \cdot Alert Emergency Responders and tell them location and nature of hazard.

Section 7 - HANDLING AND STORAGE

PROCEDURE FOR HANDLING

- \cdot Avoid all personal contact, including inhalation.
- \cdot Wear protective clothing when risk of exposure occurs.

Empty containers may contain residual dust which has the potential to accumulate following settling. Such dusts may explode in the presence of an appropriate ignition source.

- \cdot Do NOT cut, drill, grind or weld such containers.
- · In addition ensure such activity is not performed near full, partially empty or empty containers without appropriate workplace safety authorisation or permit.

RECOMMENDED STORAGE METHODS

- Glass container.
- · Polyethylene or polypropylene container.
- · Check all containers are clearly labelled and free from leaks.

STORAGE REQUIREMENTS

- · Store in original containers.
- · Keep containers securely sealed.

Section 8 - EXPOSURE CONTROLS / PERSONAL PROTECTION

EXPOSURE CONTROLS

Source	Material	TWA ppm	TWA mg/m³	STEL ppm	STEL mg/m³	Peak ppm	Peak mg/m³	TWA F/CC	Notes
US - California Permissible Exposure Limits for Chemical Contaminants	8-hydroxy-2-(di- n-propylamino)tetralin hydrobromide (Particulates not otherwise regulated Respirable fraction)		5						(n)
US - Tennessee Occupational Exposure Limits - Limits For Air Contaminants	8-hydroxy-2-(di- n-propylamino)tetralin hydrobromide (Particulates not otherwise regulated Respirable fraction)		5						
US - Wyoming Toxic and Hazardous Substances Table Z1 Limits for Air Contaminants	8-hydroxy-2-(di- n-propylamino)tetralin hydrobromide (Particulates not otherwise regulated (PNOR)(f)- Respirable fraction)		5						
US - Michigan Exposure Limits for Air Contaminants	8-hydroxy-2-(di- n-propylamino)tetralin hydrobromide (Particulates not otherwise regulated, Respirable dust)		5						
Canada - Prince Edward Island Occupational Exposure Limits	8-hydroxy-2-(di- n-propylamino)tetralin hydrobromide (Particles (Insoluble or Poorly Soluble) [NOS] Inhalable particles)		10						See Appendix B current TLV/BEI Book

ENDOELTABLE

PERSONAL PROTECTION

RESPIRATOR

Particulate

Consult your EHS staff for recommendations

EYE

■ When handling very small quantities of the material eye protection may not be required.

For laboratory, larger scale or bulk handling or where regular exposure in an occupational setting occurs:

- Chemical goggles
- · Face shield. Full face shield may be required for supplementary but never for primary protection of eyes
- · Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lens or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59].

HANDS/FEET

- Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include: such as:
- · frequency and duration of contact,
- · chemical resistance of glove material,
- · glove thickness and
- · dexterity

Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739).

· When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than

240 minutes according to EN 374) is recommended.

- · When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374) is recommended.
- · Contaminated gloves should be replaced.

Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.

- · Rubber gloves (nitrile or low-protein, powder-free latex). Employees allergic to latex gloves should use nitrile gloves in preference.
- · Double gloving should be considered.
- · PVC gloves.
- · Protective shoe covers.
- · Head covering.

Experience indicates that the following polymers are suitable as glove materials for protection against undissolved, dry solids, where abrasive particles are not present.

- · polychloroprene
- · nitrile rubber
- · butyl rubber
- · fluorocaoutchouc
- · polyvinyl chloride

Gloves should be examined for wear and/ or degradation constantly.

OTHER

- · For quantities up to 500 grams a laboratory coat may be suitable.
- · For quantities up to 1 kilogram a disposable laboratory coat or coverall of low permeability is recommended. Coveralls should be buttoned at collar and cuffs.
- · For quantities over 1 kilogram and manufacturing operations, wear disposable coverall of low permeability and disposable shoe covers.
- · For manufacturing operations, air-supplied full body suits may be required for the provision of advanced respiratory protection.
- Eye wash unit
- · Ensure there is ready access to an emergency shower.
- · For Emergencies: Vinyl suit.

ENGINEERING CONTROLS

■ Enclosed local exhaust ventilation is required at points of dust, fume or vapor generation.

HEPA terminated local exhaust ventilation should be considered at point of generation of dust, fumes or vapors.

Section 9 - PHYSICAL AND CHEMICAL PROPERTIES

PHYSICAL PROPERTIES

Solid.

Mixes with water.

State	Divided solid	Molecular Weight	328.3
Melting Range (°F)	Not available	Viscosity	Not Applicable
Boiling Range (°F)	Not available	Solubility in water (g/L)	Miscible
Flash Point (°F)	Not available	pH (1% solution)	Not available
Decomposition Temp (°F)	Not available.	pH (as supplied)	Not applicable
Autoignition Temp (°F)	Not available	Vapour Pressure (mmHG)	Negligible
Upper Explosive Limit (%)	Not available.	Specific Gravity (water=1)	Not available
Lower Explosive Limit (%)	Not available	Relative Vapor Density (air=1)	>1
Volatile Component (%vol)	Negligible	Evaporation Rate	Not available

APPEARANCE

Solid; mixes with water.

Section 10 - CHEMICAL STABILITY

CONDITIONS CONTRIBUTING TO INSTABILITY

- · Presence of incompatible materials.
- · Product is considered stable.

STORAGE INCOMPATIBILITY

■ Avoid reaction with oxidizing agents.

For incompatible materials - refer to Section 7 - Handling and Storage.

Section 11 - TOXICOLOGICAL INFORMATION

 $\hbox{8-hydroxy-2-(di-n-propylamino)} tetral in \ hydrobromide$

TOXICITY AND IRRITATION

8-HYDROXY-2-(DI-N-PROPYLAMINO)TETRALIN HYDROBROMIDE:

- unless otherwise specified data extracted from RTECS Register of Toxic Effects of Chemical Substances.
- 5-HT1A is the most widespread serotonin receptor and is present in both the central and peripheral nervous systems, where it controls a variety of different biological and neurological functions. 5-HT1A is coupled to Gi/G0, and is therefore inhibitory.

5-HT1A receptors are located both pre-synaptically and post-synaptically. The pre-synaptic receptors are also known as autoreceptors and are activated automatically upon release of serotonin. Stimulation of the 5-HT1A autoreceptors inhibits the release of serotonin. Therefore receptor agonists typically inhibit serotonergic neurotransmission at lower doses, and enhance it at higher doses. For example, administration of 8-OH-DPAT in rats causes hypothermia in low doses, while the higher doses cause hyperthermia. The autoreceptor-mediated inhibition of serotonin release has been hypothesised to be the reason for the delay seen in the therapeutic benefits of certain antidepressants such as the selective serotonin reuptake inhibitors (SSRIs) and the monoamine oxidase inhibitors (MAOIs). The autoreceptors must first desensitise or down-regulate before serotonin release is properly enhanced

5-HT1 agonists may increase the risk of serotonin syndrome, which is a rare but serious and potentially fatal condition thought to result from hyperstimulation of brainstem 5-HT1A receptors. Rare but serious cardiac events have been associated with the administration of 5-HT1 agonists, including coronary artery vasospasm, transient myocardial ischaemia, atrial and ventricular arrhythmias, and myocardial infarction, predominantly in patients with risk factors for coronary artery disease.

On the other hand side effects common to H1 receptor antagonists, such as drowsiness, weight gain and increased growth in children have been observed and attributed to impaired regulation of growth-hormone secretion

Peripherally, 5-HT1A receptor activation inhibits the release of epinephrine and norepinephrine in blood vessels, leading to vasodilation, which consists of hypotension (lowered blood pressure), and decreased heart rate.

Centrally, 5-HT1A receptors inhibit the release of glutamate and acetylcholine, thereby impairing cognition, learning, and memory.

5-HT1A receptor activation induces ACTH, corticosterone, oxytocin, and prolactin release. Oxytocin release may contribute to the receptor's antiaggressive and anxiolytic properties

Of the many drugs that are nonselective 5-HT agonists, the potent mind-altering drug LSD (D-lysergic acid diethylamide) is the most remarkable. LSD mimics 5-HT (5-hydroxytryptamine) at 5-HT1A autoreceptors of the brain (found in raphe cell bodies), producing a marked slowing of the firing rate of serotonergic neurons. In the raphe, LSD and 5-HT are equi-effective; however, in areas of serotonergic axonal projections (such as visual relay centers), LSD is far less effective than is 5-HT. Current theories focus on the ability of hallucinogens such as LSD to promote glutamate release in thalamocortical terminals, thus causing a dissociation between sensory relay centers and cortical output

5-HT1A receptors in the dorsal raphe nucleus are co-located with neurokinin 1 receptors and indirectly block the release of substance P, which is their endogenous ligand. It has been postulated that the antiemetic, analgesic, antidepressant, and anxiolytic properties of 5-HT1A agonists may be largely mediated by this action. 5-HT1A receptor activation has also been shown to increase dopamine release in the medial prefrontal cortex, striatum, and hippocampus, and may be useful for improving schizophrenia and Parkinson's disease. Many of the new atypical antipsychotic drugs are 5-HT1A agonists, and this property has been shown to enhance their clinical efficacy. No significant acute toxicological data identified in literature search.

CARCINOGEN

BROMINE COMPOUNDS (ORGANIC OR INORGANIC)

US Environmental Defense Scorecard Suspected Carcinogens

Reference(s)

P65-MC

Section 12 - ECOLOGICAL INFORMATION

Harmful to aquatic organisms.

Section 13 - DISPOSAL CONSIDERATIONS

Disposal Instructions

All waste must be handled in accordance with local, state and federal regulations.

Legislation addressing waste disposal requirements may differ by country, state and/ or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked.

A Hierarchy of Controls seems to be common - the user should investigate:

- · Reduction
- · Reuse
- · Recycling
- · Disposal (if all else fails)

This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. Shelf life considerations should also be applied in making decisions of this type. Note that properties of a material may change in use, and recycling or reuse may not always be appropriate.

DO NOT allow wash water from cleaning equipment to enter drains. Collect all wash water for treatment before disposal.

- · Recycle wherever possible.
- · Consult manufacturer for recycling options or consult Waste Management Authority for disposal if no suitable treatment or disposal facility can be identified.

Section 14 - TRANSPORTATION INFORMATION

NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS: DOT, IATA, IMDG

Section 15 - REGULATORY INFORMATION

8-hydroxy-2-(di-n-propylamino)tetralin hydrobromide (CAS: 87394-87-4,78095-19-9,78950-78-4) is found on

the following regulatory lists;

"Canada - Prince Edward Island Occupational Exposure Limits", "Canada National Pollutant Release Inventory (NPRI)", "US - California Permissible Exposure Limits for Chemical Contaminants", "US - Michigan Exposure Limits for Air Contaminants", "US - Tennessee Occupational Exposure Limits - Limits For Air Contaminants", "US - Wyoming Toxic and Hazardous Substances Table Z1 Limits for Air Contaminants"

Section 16 - OTHER INFORMATION

Ingredients with multiple CAS Nos

Ingredient Name CAS 8-hydroxy-2-(di-n-propylamino)tetralin hydrobromide 87394-87-4, 78095-19-9, 78950-78-4

Reasonable care has been taken in the preparation of this information, but the author makes no warranty of merchantability or any other warranty, expressed or implied, with respect to this information. The author makes no representations and assumes no liability for any direct, incidental or consequential damages resulting from its use. For additional technical information please call our toxicology department on +800 CHEMCALL.

- Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references.

 A list of reference resources used to assist the committee may be found at:

 www.chemwatch.net/references.
- The (M)SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

This document is copyright. Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH. TEL (+61 3) 9572 4700.

Issue Date: May-2-2009 Print Date:Feb-2-2011