
Diethyldithiocarbamic acid sodium salt trihydrate

Address: 2145 Delaware Ave Santa Cruz, CA 95060 Telephone: 800.457.3801 or 831.457.3800 Emergency Tel: CHEMWATCH: From within the US and Canada: 877-715-9305 Emergency Tel: From outside the US and Canada: +800 2436 2255 (1-800-CHEMCALL) or call +613 9573 3112

PRODUCT USE

Used for colorimetric determination of small quantities of copper and to separate copper from other metals. Also used as a chelating agent and in the experimental treatment of Wilsons disease. Nitric oxide (NO) spin-trapping reagent; inhibits induction of macrophage nitric oxide synthase.

SYNONYMS

C5-H10-N-S2-Na.3H20, C5-H10-N-S2-Na.3H20, "sodium diethyl dithiocarbamate trihydrate", "diethyl sodium dithiocarbamate trihydrate", "dithiocarb (trihydrate form)", "diethyldithiocarbamic acid sodium salt trihydrate", "diethyldithiocarbamate sodium trihydrate", "carbamic acid, diethyldithio, sodium salt, trihydrate", "diethyldithiocarbamic acid sodium (trihydrate form)", "sodium N, N-diethyldithiocarbamate", "diethyldithiocarbamate", "sodium N, N-diethyldithiocarbamate", "diethyldithiocarbamate", "sodium N, N-diethyldithic carbamate", "sodium N, N-diethyldithic carbamate", "sodium N, N-diethyldithic carbamate", "sodium DEDT", "colourimetric reagent/ chelating agent"

Section 2 - HAZARDS IDENTIFICATION

CANADIAN WHMIS SYMBOLS

EMERGENCY OVERVIEW RISK Harmful if swallowed. Causes burns. Risk of serious damage to eyes. Very toxic to aquatic organisms.

POTENTIAL HEALTH EFFECTS

ACUTE HEALTH EFFECTS

SWALLOWED

■ Accidental ingestion of the material may be harmful; animal experiments indicate that ingestion of less than 150 gram may be fatal or may produce serious damage to the health of the individual.

The material can produce chemical burns within the oral cavity and gastrointestinal tract following ingestion.

■ Lethal doses of some thiocarbamates have produced muscle weakness and ascending paralysis progressing to respiratory paralysis and death in animals. Exposure to small quantities of thiocarbamates and intake of small quantities of ethanol may produce flushing, breathing difficulties, nausea and vomiting and lowered blood pressure. Sensitization to alcohol may last as long as 6-14 days following exposure.

• The acute toxicity of thiocarbamates is generally low, because of their rapid metabolism. Exposure to high doses may produce signs such as loss of appetite, squinting, excessive production of saliva, watery eyes, hairs standing on end, labored breathing, reduced body temperature, incoordination, depression and rapid muscle twitching.

EYE

The material can produce chemical burns to the eye following direct contact. Vapors or mists may be extremely irritating.
 If applied to the eyes, this material causes severe eye damage.

SKIN

The material can produce chemical burns following direct contactwith the skin.

■ Skin contact is not thought to produce harmful health effects (as classified using animal models). Systemic harm, however, has been identified following exposure of animals by at least one other route and the material may still produce health damage following entry through wounds, lesions or abrasions. Good hygiene practice requires that exposure be kept to a minimum and that suitable gloves be used in an occupational setting.

Open cuts, abraded or irritated skin should not be exposed to this material.

Entry into the blood-stream, through, for example, cuts, abrasions or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected.

INHALED

If inhaled, this material can irritate the throat andlungs of some persons.

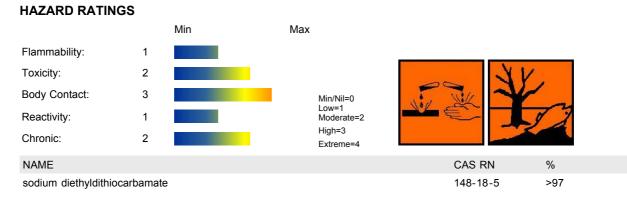
The material is not thought to produce adverse health effects following inhalation (as classified using animal models). Nevertheless, adverse effects have been produced following exposure of animals by at least one other route and good hygiene practice requires that exposure be kept to a minimum and that suitable control measures be used in an occupational setting.
 Persons with impaired respiratory function, airway diseases and conditions such as emphysema or chronic bronchitis, may

incur further disability if excessive concentrations of particulate are inhaled.

CHRONIC HEALTH EFFECTS

■ Repeated or prolonged exposure to corrosives may result in the erosion of teeth, inflammatory and ulcerative changes in the mouth and necrosis (rarely) of the jaw. Bronchial irritation, with cough, and frequent attacks of bronchial pneumonia may ensue. Gastrointestinal disturbances may also occur. Chronic exposures may result in dermatitis and/or conjunctivitis.

There has been some concern that this material can cause cancer or mutations but there is not enough data to make an assessment.


Limited evidence suggests that repeated or long-term occupational exposure may produce cumulative health effects involving organs or biochemical systems.

Exposure to the material may cause concerns for human fertility, on the basis that similar materials provide some evidence of impaired fertility in the absence of toxic effects, or evidence of impaired fertility occurring at around the same dose levels as other toxic effects, but which are not a secondary non-specific consequence of other toxic effects.

Long term exposure to high dust concentrations may cause changes in lung function i.e. pneumoconiosis; caused by particles less than 0.5 micron penetrating and remaining in the lung. Prime symptom is breathlessness; lung shadows show on X-ray. Some dithiocarbamates may cause birth defects and cancer and may affect male reproductive capacity. They may also cause goiter (overactivity of the thyroid gland) and nerve disorders.

Thiocarbamates have been shown to alter sperm form and therefore reproduction.

Administration to two strains of mice produced an increased incidence of liver cell tumours in the males of one strain and a slight increase in lung tumours in males of the other strain.

Section 3 - COMPOSITION / INFORMATION ON INGREDIENTS

Section 4 - FIRST AID MEASURES

SWALLOWED

- For advice, contact a Poisons Information Center or a doctor at once.
- Urgent hospital treatment is likely to be needed.
- If swallowed do NOT induce vomiting.
- If vomiting occurs, lean patient forward or place on left side (head-down position, if possible) to maintain open airway and

prevent aspiration.

- Observe the patient carefully.
- Never give liquid to a person showing signs of being sleepy or with reduced awareness; i.e. becoming unconscious.
- Give water to rinse out mouth, then provide liquid slowly and as much as casualty can comfortably drink.
- Transport to hospital or doctor without delay.

EYE

- If this product comes in contact with the eyes:
- Immediately hold eyelids apart and flush the eye continuously with running water.
- Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids.
- Continue flushing until advised to stop by the Poisons Information Center or a doctor, or for at least 15 minutes.
- Transport to hospital or doctor without delay.
- · Removal of contact lenses after an eve injury should only be undertaken by skilled personnel.

SKIN

- If skin or hair contact occurs:
- Immediately flush body and clothes with large amounts of water, using safety shower if available.
- Quickly remove all contaminated clothing, including footwear.
- Wash skin and hair with running water. Continue flushing with water until advised to stop by the Poisons Information Center.

Transport to hospital, or doctor.

INHALED

- If fumes or combustion products are inhaled remove from contaminated area.
- Lay patient down. Keep warm and rested.
- Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures
- Apply artificial respiration if not breathing, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained. Perform CPR if necessary.
- Transport to hospital, or doctor.

NOTES TO PHYSICIAN

- Medical literature on human exposure to thiocarbamate derivatives is scarce.
- Animal studies suggest that contact dermatitis and thyroid hyperplasia may occur following exposure.
- These compounds do not have the cholinergic properties of structurally related carbamate insecticides.
- The usual measures for gut and skin contamination are recommended for large doses.
- Some thiocarbamates are structurally similar to disulfiram and may cause the characteristically unpleasant alcohol response in a small number of patients. Disulfuram/ alcohol type reactions may last for several hours; they may respond to fluids, oxygen and analgesics. Dysrhythmias may occur and patients with serious reactions should have cardiac monitoring.
- Precautions should be taken to prohibit intake of alcohol for 10 days.
- Fats, oils and lipid solvents must not be consumed as they may enhance absorption.

As a general rule thiocarbamates can be absorbed by the skin, mucous membranes and respiratory and gastrointestinal tract. They are eliminated quickly via expired air and urine. Two major pathways exist for the metabolism of thiocarbamates in mammals. One is via sulfoxidation and conjugation with glutathione. The conjugation product is cleaved to the cysteine derivative which is further metabolized to a mercapturic acid compound. The second route involves oxidation of the sulfur to a sulfoxide which is oxidized to a sulfone, or hydroxylation to compounds which enter the carbon metabolic pool.

Section 5 - FIRE FIGHTING MEASURES

Vapour Pressure (mmHG):	Not applicable
Upper Explosive Limit (%):	Not available.
Specific Gravity (water=1):	1.1
Lower Explosive Limit (%):	Not available.

EXTINGUISHING MEDIA

- ٠
- Foam.
- Dry chemical powder. BCF (where regulations permit).
- Carbon dioxide
- · Water spray or fog Large fires only.
- FIRE FIGHTING
- · Alert Emergency Responders and tell them location and nature of hazard.
- Wear breathing apparatus plus protective gloves.
- Prevent, by any means available, spillage from entering drains or water course.
- Use water delivered as a fine spray to control fire and cool adjacent area.
- DO NOT approach containers suspected to be hot.
- Cool fire exposed containers with water spray from a protected location.
- If safe to do so, remove containers from path of fire.
- · Equipment should be thoroughly decontaminated after use.

GENERAL FIRE HAZARDS/HAZARDOUS COMBUSTIBLE PRODUCTS

- Combustible solid which burns but propagates flame with difficulty.
- Avoid generating dust, particularly clouds of dust in a confined or unventilated space as dusts may form an explosive mixture with air, and any source of ignition, i.e. flame or spark, will cause fire or explosion. Dust clouds generated by the fine grinding of the solid are a particular hazard; accumulations of fine dust may burn rapidly and fiercely if ignited.
- Dry dust can be charged electrostatically by turbulence, pneumatic transport, pouring, in exhaust ducts and during

transport.

- Build-up of electrostatic charge may be prevented by bonding and grounding.
- Powder handling equipment such as dust collectors, dryers and mills may require additional protection measures such as explosion venting

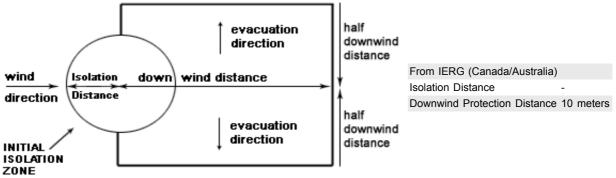
Combustion products include: carbon monoxide (CO), carbon dioxide (CO2), nitrogen oxides (NOx), sulfur oxides (SOx), metal oxides, other pyrolysis products typical of burning organic material.

FIRE INCOMPATIBILITY

Avoid contamination with oxidizing agents i.e. nitrates, oxidizing acids, chlorine bleaches, pool chlorine etc. as ignition may result

PERSONAL PROTECTION

Glasses: Full face- shield. Gloves: Respirator: Particulate


Section 6 - ACCIDENTAL RELEASE MEASURES

MINOR SPILLS

- Remove all ignition sources.
- Clean up all spills immediately.
- Avoid contact with skin and eyes.
- Control personal contact by using protective equipment.
- Use dry clean up procedures and avoid generating dust.
- Place in a suitable, labelled container for waste disposal.
- Environmental hazard contain spillage
- MAJOR SPILLS
- Environmental hazard contain spillage.
- Moderate hazard.
- CAUTION: Advise personnel in area.
- Alert Emergency Responders and tell them location and nature of hazard.
- Control personal contact by wearing protective clothing.
- Prevent, by any means available, spillage from entering drains or water courses.
- Recover product wherever possible.
- IF DRY: Use dry clean up procedures and avoid generating dust. Collect residues and place in sealed plastic bags or other containers for disposal. IF WET: Vacuum/shovel up and place in labelled containers for disposal.
- ALWAYS: Wash area down with large amounts of water and prevent runoff into drains.
- If contamination of drains or waterways occurs, advise emergency services.

PROTECTIVE ACTIONS FOR SPILL

PROTECTIVE ACTION ZONE

FOOTNOTES

1 PROTECTIVE ACTION ZONE is defined as the area in which people are at risk of harmful exposure. This zone assumes that random changes in wind direction confines the vapour plume to an area within 30 degrees on either side of the predominant wind direction, resulting in a crosswind protective action distance equal to the downwind protective action distance.

TIVE ACTIONS should be initiated to the extent possible, beginning with those closest to the spill and working away from the site in the downwind direction. Within the protective action zone a level of vapour concentration may exist resulting in nearly all unprotected persons becoming incapacitated and unable to take protective action and/or incurring serious or irreversible health effects.

3 INITIAL ISOLATION ZONE is determined as an area, including upwind of the incident, within which a high probability of localised wind reversal may expose nearly all persons without appropriate protection to life-threatening concentrations of the material. 4 SMALL SPILLS involve a leaking package of 200 litres (55 US gallons) or less, such as a drum (jerrican or box with inner containers). Larger packages leaking less than 200 litres and compressed gas leaking from a small cylinder are also considered "small spills". LARGE SPILLS involve many small leaking packages or a leaking package of greater than 200 litres, such as a cargo tank, portable tank or a "one-tonne" compressed gas cylinder. 5 Guide 171 is taken from the US DOT emergency response guide book. 6 IERG information is derived from CANUTEC - Transport Canada.

ACUTE EXPOSURE GUIDELINE LEVELS (AEGL) (in ppm)

AEGL 1: The airborne concentration of a substance above which it is predicted that the general population, including susceptible individuals, could experience notable discomfort, irritation, or certain asymptomatic nonsensory effects. However, the effects are not disabling and are transient and reversible upon cessation of exposure.

AEGL 2: The airborne concentration of a substance above which it is predicted that the general population, including susceptible individuals, could experience irreversible or other serious, long-lasting adverse health effects or an impaired ability to escape.

AEGL 3: The airborne concentration of a substance above which it is predicted that the general population, including susceptible individuals, could experience life-threatening health effects or death.

Section 7 - HANDLING AND STORAGE

PROCEDURE FOR HANDLING

- Avoid all personal contact, including inhalation.
- · Wear protective clothing when risk of exposure occurs.
- Use in a well-ventilated area.
- · Prevent concentration in hollows and sumps.
- DO NOT enter confined spaces until atmosphere has been checked.
- DO NOT allow material to contact humans, exposed food or food utensils.
- · Avoid contact with incompatible materials.
- When handling, DO NOT eat, drink or smoke.
- Keep containers securely sealed when not in use.
- Avoid physical damage to containers.
- · Always wash hands with soap and water after handling.
- Work clothes should be laundered separately.
- · Launder contaminated clothing before re-use.
- Use good occupational work practice.
- · Observe manufacturer's storing and handling recommendations.
- Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions are maintained.

Empty containers may contain residual dust which has the potential to accumulate following settling. Such dusts may explode in the presence of an appropriate ignition source.

- Do NOT cut, drill, grind or weld such containers
- In addition ensure such activity is not performed near full, partially empty or empty containers without appropriate workplace safety authorisation or permit.

RECOMMENDED STORAGE METHODS

- Glass container.
- Polyethylene or polypropylene container.
- · Check all containers are clearly labelled and free from leaks.

STORAGE REQUIREMENTS

Observe manufacturer's storing and handling recommendations.

SAFE STORAGE WITH OTHER CLASSIFIED CHEMICALS

X: Must not be stored together

O: May be stored together with specific preventions

+: May be stored together

Section 8 - EXPOSURE CONTROLS / PERSONAL PROTECTION

EXPOSURE CONTROLS

Source	Material	TWA ppm	TWA mg/m³	STEL ppm	STEL mg/m³	Peak ppm	Peak mg/m³	TWA F/CC	Notes
US - Oregon Permissible Exposure Limits (Z3)	sodium diethyldithiocarbamate (Inert or Nuisance Dust: (d) Total dust)		10						*
US OSHA Permissible Exposure Levels (PELs) - Table Z3	sodium diethyldithiocarbamate (Inert or Nuisance Dust: (d) Respirable fraction)		5						
US OSHA Permissible Exposure Levels (PELs) - Table Z3	sodium diethyldithiocarbamate (Inert or Nuisance Dust: (d) Total dust)		15						
US - Hawaii Air Contaminant Limits	sodium diethyldithiocarbamate (Particulates not other wise regulated - Total dust)		10						
US - Hawaii Air Contaminant Limits	sodium diethyldithiocarbamate (Particulates not other wise regulated - Respirable fraction)		5						

US - Oregon Permissible Exposure Limits (Z3)	sodium diethyldithiocarbamate (Inert or Nuisance Dust: (d) Respirable fraction)	5 *
US - Tennessee Occupational Exposure Limits - Limits For Air Contaminants	sodium diethyldithiocarbamate (Particulates not otherwise regulated Respirable fraction)	5
US - Wyoming Toxic and Hazardous Substances Table Z1 Limits for Air Contaminants	sodium diethyldithiocarbamate (Particulates not otherwise regulated (PNOR)(f)- Respirable fraction)	5
US - Michigan Exposure Limits for Air Contaminants	sodium diethyldithiocarbamate (Particulates not otherwise regulated, Respirable dust)	5

MATERIAL DATA

SODIUM DIETHYLDITHIOCARBAMATE:

■ It is the goal of the ACGIH (and other Agencies) to recommend TLVs (or their equivalent) for all substances for which there is evidence of health effects at airborne concentrations encountered in the workplace.

At this time no TLV has been established, even though this material may produce adverse health effects (as evidenced in animal experiments or clinical experience). Airborne concentrations must be maintained as low as is practically possible and occupational exposure must be kept to a minimum.

NOTE: The ACGIH occupational exposure standard for Particles Not Otherwise Specified (P.N.O.S) does NOT apply.

Sensory irritants are chemicals that produce temporary and undesirable side-effects on the eyes, nose or throat. Historically occupational exposure standards for these irritants have been based on observation of workers' responses to various airborne concentrations. Present day expectations require that nearly every individual should be protected against even minor sensory irritation and exposure standards are established using uncertainty factors or safety factors of 5 to 10 or more. On occasion animal no-observable-effect-levels (NOEL) are used to determine these limits where human results are unavailable. An additional approach, typically used by the TLV committee (USA) in determining respiratory standards for this group of chemicals, has been to assign ceiling values (TLV C) to rapidly acting irritants and to assign short-term exposure limits (TLV STELs) when the weight of evidence from irritation, bioaccumulation and other endpoints combine to warrant such a limit. In contrast the MAK Commission (Germany) uses a five-category system based on intensive odour, local irritation, and elimination half-life. However this system is being replaced to be consistent with the European Union (EU) Scientific Committee for Occupational Exposure Limits (SCOEL); this is more closely allied to that of the USA.

- cause inflammation
- cause increased susceptibility to other irritants and infectious agents
- lead to permanent injury or dysfunction
- · permit greater absorption of hazardous substances and
- acclimate the worker to the irritant warning properties of these substances thus increasing the risk of overexposure.

PERSONAL PROTECTION

Consult your EHS staff for recommendations

EYE

- Chemical goggles.
- Full face shield.
- Contact lenses pose a special hazard; soft lenses may absorb irritants and all lenses concentrate them.

HANDS/FEET

- Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include: such as:
- frequency and duration of contact,
- chemical resistance of glove material,
- glove thickness and
- dexterity
- Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739).
- When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374) is recommended.
- When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374) is recommended.
- · Contaminated gloves should be replaced.

Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.

Experience indicates that the following polymers are suitable as glove materials for protection against undissolved, dry solids, where abrasive particles are not present.

- polychloroprene
- nitrile rubber
- butyl rubber
- fluorocaoutchouc
- polyvinyl chloride

Gloves should be examined for wear and/ or degradation constantly.

OTHER

Overalls.

- P.V.C. apron.
- Barrier cream.
- Skin cleansing cream.
- ٠ Eve wash unit.
- Respirators may be necessary when engineering and administrative controls do not adequately prevent exposures.
- The decision to use respiratory protection should be based on professional judgment that takes into account toxicity information, exposure measurement data, and frequency and likelihood of the worker's exposure - ensure users are not subject to high thermal loads which may result in heat stress or distress due to personal protective equipment (powered, positive flow, full face apparatus may be an option).
- Published occupational exposure limits, where they exist, will assist in determining the adequacy of the selected respiratory These may be government mandated or vendor recommended.
- Certified respirators will be useful for protecting workers from inhalation of particulates when properly selected and fit tested as part of a complete respiratory protection program.
- Use approved positive flow mask if significant quantities of dust becomes airborne.
- Try to avoid creating dust conditions.

RESPIRATOR

	Ľ		

—			
Protection Factor	Half-Face Respirator	Full-Face Respirator	Powered Air Respirator
10 x PEL	P1	-	PAPR-P1
	Air-line*	-	-
50 x PEL	Air-line**	P2	PAPR-P2
100 x PEL	-	P3	-
		Air-line*	-
100+ x PEL	-	Air-line**	PAPR-P3
* - Negative pressure demand	** - Continuous flow		

Explanation of Respirator Codes:

Class 1 low to medium absorption capacity filters.

Class 2 medium absorption capacity filters.

Class 3 high absorption capacity filters.

PAPR Powered Air Purifying Respirator (positive pressure) cartridge.

Type A for use against certain organic gases and vapors.

Type AX for use against low boiling point organic compounds (less than 65°C).

Type B for use against certain inorganic gases and other acid gases and vapors. Type E for use against sulfur dioxide and other acid gases and vapors.

Type K for use against ammonia and organic ammonia derivatives

Class P1 intended for use against mechanically generated particulates of sizes most commonly encountered in industry, e.g. asbestos, silica.

Class P2 intended for use against both mechanically and thermally generated particulates, e.g. metal fume.

Class P3 intended for use against all particulates containing highly toxic materials, e.g. beryllium. The local concentration of material, quantity and conditions of use determine the type of personal protective equipment required

Use appropriate NIOSH-certified respirator based on informed professional judgement. In conditions where no reasonable estimate of exposure can be made, assume the exposure is in a concentration IDLH and use NIOSH-certified full face pressure demand SCBA with a minimum service life of 30 minutes, or a combination full facepiece pressure demand SAR with auxiliary self-contained air supply. Respirators provided only for escape from IDLH atmospheres shall be NIOSH-certified for escape from the atmosphere in which they will be used.

ENGINEERING CONTROLS

- Local exhaust ventilation is required where solids are handled as powders or crystals; even when particulates are relatively large, a certain proportion will be powdered by mutual friction.
- Exhaust ventilation should be designed to prevent accumulation and recirculation of particulates in the workplace.
- If in spite of local exhaust an adverse concentration of the substance in air could occur, respiratory protection should be considered. Such protection might consist of:
- (a): particle dust respirators, if necessary, combined with an absorption cartridge;
- (b): filter respirators with absorption cartridge or canister of the right type;

(c): fresh-air hoods or masks

- Build-up of electrostatic charge on the dust particle, may be prevented by bonding and grounding.
- Powder handling equipment such as dust collectors, dryers and mills may require additional protection measures such as explosion venting.

Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to efficiently remove the contaminant.

Type of Contaminant:	Air Speed:
direct spray, spray painting in shallow booths, drum filling, conveyer loading, crusher dusts, gas discharge (active generation into zone of rapid air motion)	1-2.5 m/s (200-500 f/min.)
grinding, abrasive blasting, tumbling, high speed wheel generated dusts (released at high initial velocity into zone of very high rapid air motion).	2.5-10 m/s (500-2000 f/min.)
Within each range the appropriate value depends on:	
Lower end of the range	Upper end of the range
1: Room air currents minimal or favorable to capture	1: Disturbing room air currents
2: Contaminants of low toxicity or of nuisance value only	2: Contaminants of high toxicity
3: Intermittent, low production.	3: High production, heavy use
4: Large hood or large air mass in motion	4: Small hood-local control only

Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at

the extraction fan, for example, should be a minimum of 4-10 m/s (800-2000 f/min) for extraction of crusher dusts generated 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used.

Section 9 - PHYSICAL AND CHEMICAL PROPERTIES

PHYSICAL PROPERTIES

Solid.			
State	Divided solid	Molecular Weight	171.27
Melting Range (°F)	203- 208.4.5	Viscosity	Not Applicable
Boiling Range (°F)	Not applicable.	Solubility in water (g/L)	Reacts
Flash Point (°F)	Not Available	pH (1% solution)	>7
Decomposition Temp (°F)	Not available.	pH (as supplied)	Not applicable
Autoignition Temp (°F)	Not available.	Vapour Pressure (mmHG)	Not applicable
Upper Explosive Limit (%)	Not available.	Specific Gravity (water=1)	1.1
Lower Explosive Limit (%)	Not available.	Relative Vapor Density (air=1)	5.9
Volatile Component (%vol)	Not applicable.	Evaporation Rate	Not applicable

APPEARANCE

White or colourless crystals. It is freely soluble in water and soluble in alcohol. In an aqueous solution it is alkaline and slowly decomposes. Also available in trihydrated form.

Section 10 - CHEMICAL STABILITY

CONDITIONS CONTRIBUTING TO INSTABILITY

- Presence of incompatible materials.
- Product is considered stable.
- Hazardous polymerization will not occur.

STORAGE INCOMPATIBILITY

- Thiocarbamates and dithiocarbamates are incompatible with acids, peroxides, and acid halides.
- Flammable gases are generated by the combination of thiocarbamates and dithiocarbamates with aldehydes, nitrides, and hydrides.
- Segregate from alcohol, water.
- Avoid oxidizing agents, acids, acid chlorides, acid anhydrides.
- NOTE: May develop pressure in containers; open carefully. Vent periodically.

For incompatible materials - refer to Section 7 - Handling and Storage.

Section 11 - TOXICOLOGICAL INFORMATION

sodium diethyldithiocarbamate

TOXICITY AND IRRITATION

■ unless otherwise specified data extracted from RTECS - Register of Toxic Effects of Chemical Substances.

Oral (rat) LD50: >1000 mg/kg Nil Reported	
Intraperitoneal (rat) LD50: 1250 mg/kg	

Oral (mouse) LD50: 1500 mg/kg

Intraperitoneal (mouse) LD50: 1032 mg/kg

Oral (rabbit) LD50: 500 mg/kg

■ Asthma-like symptoms may continue for months or even years after exposure to the material ceases. This may be due to a non-allergenic condition known as reactive airways dysfunction syndrome (RADS) which can occur following exposure to high levels of highly irritating compound. Key criteria for the diagnosis of RADS include the absence of preceding respiratory disease, in a non-atopic individual, with abrupt onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the irritant. A reversible airflow pattern, on spirometry, with the presence of moderate to severe bronchial hyperreactivity on methacholine challenge testing and the lack of minimal lymphocytic inflammation, without eosinophilia, have also been included in the criteria for diagnosis of RADS. RADS (or asthma) following an irritating substance. Industrial bronchitis, on the other hand, is a disorder that occurs as result of exposure due to high concentrations of irritating substance (often particulate in nature) and is completely reversible after exposure ceases. The disorder is characterised by dyspnea, cough and mucus production.

The substance is classified by IARC as Group 3:

NOT classifiable as to its carcinogenicity to humans.

Evidence of carcinogenicity may be inadequate or limited in animal testing.

CARCINOGEN

International Agency for Research on Cancel (IARC) - Agents Reviewed by the IARC Monographs

Group

CARBAMIC ACID, DIETHYLDITHIO-. SODIUM SALT

US Environmental Defense Scorecard Suspected Carcinogens

NTP-Reference(s) HS

3

Section 12 - ECOLOGICAL INFORMATION

Refer to data for ingredients, which follows:

- SODIUM DIETHYLDITHIOCARBAMATE:
- Very toxic to aquatic organisms.

Do NOT allow product to come in contact with surface waters or to intertidal areas below the mean high water mark. Do not contaminate water when cleaning equipment or disposing of equipment wash-waters.

Wastes resulting from use of the product must be disposed of on site or at approved waste sites.

Thiocarbamates are volatile and will therefore evaporate from soil. Leaching and lateral movement in the soil may take place because of water-solubility. Some photodegradation may occur. Factors that influence biodegradation in soil include volatility, soil type, soil moisture, adsorption, pH, temperature, and photodegradation, all of which make it unlikely that long-term contamination of the soil will occur. In plants thiocarbamates are rapidly metabolized in typical oxidation resulting and the solution of the soil will occur. Sulfur oxidation to the corresponding sulfoxides, reactive intermediates that are capable of reacting with sulfhydryl groups to form conjugates. On hydrolysis mercaptans, carbon dioxide and alkylamines may be formed. Soil microorganisms also contribute significantly to the disappearance of thiocarbamates from the soil. In microorganisms and plants thiocarbamates undergo hydrolysis followed by transthiolation and sulfoxidation to form carbon dioxide and compounds that enter the metabolic pool. From limited evidence it appears that thiocarbamates and breakdown products can effect the enzyme activities, respiration and nitrification of soil microorganisms at dose levels of the order of 10 mg/kg dry soil or more. The acute toxicity of thiocarbamates for fish is of the order of 5-25 mg/l water. There seems to be little or no risk for birds or honeybees.

■ Information on the environmental impact of dithiocarbamates with respect to persistence and bioaccumulation in different species and food chains is limited. Available information suggests that these compounds are degraded in the presence of moisture, oxygen, etc. to form a number of compounds, some of which are toxicologically important.

Soil organisms are capable of metabolizing dithiocarbamates; breakdown products appear to affect enzyme activities, respiration and nitrification at dose levels of the order of 10 mg/kg dry soil or more.

Generally dithiocarbamates have an LC50 of less than 1 mg/l for invertebrates (Daphnia) and between 1 and 4 mg/l for algae (Chlorella).

The acute toxicity in fish is higher. The sac fry and early fry stages of rainbow trout have a higher sensitivity than other early life stages and embryotoxic and teratogenic effects have been induced by certain dithiocarbamates. Bioaccumulation, however, is low (bioconcentration factor.

DO NOT discharge into sewer or waterways.

Ecotoxicitv

Ingredient	Persistence: Water/Soil	Persistence: Air	Bioaccumulation	Mobility
sodium diethyldithiocarbamate	HIGH		LOW	HIGH

Section 13 - DISPOSAL CONSIDERATIONS

Disposal Instructions

All waste must be handled in accordance with local, state and federal regulations.

Puncture containers to prevent re-use and bury at an authorized landfill.

Legislation addressing waste disposal requirements may differ by country, state and/ or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked.

- A Hierarchy of Controls seems to be common the user should investigate:
- Reduction
- Reuse
- Recycling
- Disposal (if all else fails)

This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. Shelf life considerations should also be applied in making decisions of this type. Note that properties of a material may change in use, and recycling or reuse may not always be appropriate.

DO NOT allow wash water from cleaning equipment to enter drains. Collect all wash water for treatment before disposal.

- Recycle wherever possible.
- Consult manufacturer for recycling options or consult Waste Management Authority for disposal if no suitable treatment or disposal facility can be identified.
- Dispose of by: Burial in a licensed land-fill or Incineration in a licensed apparatus (after admixture with suitable combustible material)
- Decontaminate empty containers. Observe all label safeguards until containers are cleaned and destroyed.

Section 14 - TRANSPORTATION INFORMATION

DOT: Symbols: Identification Numbers:

G UN3077 Hazard class or Division: PG:

0 146 335 DEA 100 103

9

Ш

Label Codes:	9		Special provision	าร:	,	о, эээ, вэ4, івс T1, TP33	o, 180,
Packaging: Exceptions:	155		Packaging: Non-bulk:		213	213	
Packaging: Exceptions:	155		Quantity limitation Passenger aircra		No lii	nit	
Quantity Limitations: Cargo aircraft only:	No limit		Vessel stowage	: Location:	А		
Vessel stowage: Other:	None						
Hazardous materials description Environmentally hazardous sub Air Transport IATA:							
ICAO/IATA Class:	9		ICAO/IATA Subi	risk:	麴		
UN/ID Number:	3077		Packing Group:		Ш		
Special provisions:	A97						
Shipping Name: ENVIRO DIETHYLDITHIOCARBAMATE Maritime Transport IMD0	/	HAZARDOUS	SUBSTANCE,	SOLID,	N.O.S.	*(CONTAINS	SODIUM
IMDG Class:	9		IMDG Subrisk:		None	e	
UN Number:	3077		Packing Group:		111		
EMS Number:	F-A,S-F		Special provision	ns:	274 9	909 944	
Limited Quantities:	5 kg						

Shipping Name: ENVIRONMENTALLY HAZARDOUS SUBSTANCE, SOLID, N.O.S. (contains sodium diethyldithiocarbamate)

Section 15 - REGULATORY INFORMATION

sodium diethyldithiocarbamate (CAS: 148-18-5,20624-25-3) is found on the following regulatory lists;

"Canada Domestic Substances List (DSL)","International Agency for Research on Cancer (IARC) - Agents Reviewed by the IARC Monographs","US - Vermont Hazardous Constituents","US - Washington Dangerous waste constituents list","US DOE Temporary Emergency Exposure Limits (TEELs)","US RCRA (Resource Conservation & Recovery Act) - Hazardous Constituents - Appendix VIII to 40 CFR 261","US Toxic Substances Control Act (TSCA) - Inventory"

Section 16 - OTHER INFORMATION

LIMITED EVIDENCE

- Cumulative effects may result following exposure*.
- Limited evidence of a carcinogenic effect*.
- May possibly affect fertility*.
 * (limited evidence).

Ingredients with multiple CAS Nos

Ingredient Name sodium diethyldithiocarbamate CAS 148-18-5, 20624-25-3

Reasonable care has been taken in the preparation of this information, but the author makes no warranty of merchantability or any other warranty, expressed or implied, with respect to this information. The author makes no representations and assumes no liability for any direct, incidental or consequential damages resulting from its use. For additional technical information please call our toxicology department on +800 CHEMCALL.

 Classification of the mixture and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references. A list of reference resources used to assist the committee may be found at: www.chemwatch.net/references.

The (M)SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

This document is copyright. Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH. TEL (+61 3) 9572 4700.

Issue Date: Jan-20-2009 Print Date:Apr-21-2010