Ammonium molybdate tetrahydrate

sc-202943

Material Safety Data Sheet

The Power to Quantie

Hazard Alert Code Key:

EXTREME

HIGH

MODERATE

LOW

Section 1 - CHEMICAL PRODUCT AND COMPANY IDENTIFICATION

PRODUCT NAME

Ammonium molybdate tetrahydrate

STATEMENT OF HAZARDOUS NATURE

CONSIDERED A HAZARDOUS SUBSTANCE ACCORDING TO OSHA 29 CFR 1910.1200.

SUPPLIER

Santa Cruz Biotechnology, Inc. 2145 Delaware Avenue Santa Cruz, California 95060 800.457.3801 or 831.457.3800

EMERGENCY

ChemWatch

Within the US & Canada: 877-715-9305 Outside the US & Canada: +800 2436 2255 (1-800-CHEMCALL) or call +613 9573 3112

SYNONYMS

(NH4)6Mo7O24•4H2O, "ammonium molybdate, anhydrous", "diammonium molybdate", "ammonium molybdate (VI) tetrahydrate", tetrahydrate, "molybdic acid, diammonium salt", "ammonium paramolybdate", "ammonium dimolybdate", "diammonium tetraoxomolybdate(2-)", "APS AR00000046"

Section 2 - HAZARDS IDENTIFICATION

CHEMWATCH HAZARD RATINGS

		Min	Max
Flammability	0		
Toxicity	2		
Body Contact	2		Min/Nil=0 Low=1
Reactivity	0		Moderate=2
Chronic	2		High=3 Extreme=4

CANADIAN WHMIS SYMBOLS

EMERGENCY OVERVIEW RISK

Harmful if swallowed.

Danger of cumulative effects.

May cause SENSITIZATION by skin contact.

Irritating to eyes, respiratory system and skin.

Harmful to aquatic organisms, may cause long-term adverse effects in the aquatic environment.

POTENTIAL HEALTH EFFECTS

ACUTE HEALTH EFFECTS

SWALLOWED

- Accidental ingestion of the material may be harmful; animal experiments indicate that ingestion of less than 150 gram may be fatal or may produce serious damage to the health of the individual.
- Molybdenum, an essential trace element, can in large doses hamper growth and cause loss of appetite, listlessness and diarrhoea. Anaemia also occurs, and other symptoms include greying of hair, shrinking of the testicles, reduced fertility and milk production, shortness of breath, incoordination and irritation of the mucous membranes. Symptoms of copper deficiency are also seen.
- Large doses of ammonia or injected ammonium salts may produce diarrhoea and may be sufficiently absorbed to produce increased production of urine and systemic poisoning. Symptoms include weakening of facial muscle, tremor, anxiety, reduced muscle and limb control.

EYE

■ This material can cause eye irritation and damage in some persons.

SKIN

- This material can cause inflammation of the skin oncontact in some persons.
- The material may accentuate any pre-existing dermatitis condition.
- Open cuts, abraded or irritated skin should not be exposed to this material.
- Entry into the blood-stream, through, for example, cuts, abrasions or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected.

INHALED

- The material can cause respiratory irritation in some persons. The body's response to such irritation can cause further lung damage.
- Persons with impaired respiratory function, airway diseases and conditions such as emphysema or chronic bronchitis, may incur further disability if excessive concentrations of particulate are inhaled.

If prior damage to the circulatory or nervous systems has occurred or if kidney damage has been sustained, proper screenings should be conducted on individuals who may be exposed to further risk if handling and use of the material result in excessive exposures.

■ Bronchial and alveolar exudate are apparent in animals exposed to molybdenum by inhalation. Molybdenum fume may produce bronchial irritation and moderate fatty changes in liver and kidney.

CHRONIC HEALTH EFFECTS

■ Substance accumulation, in the human body, is likely and may cause some concern following repeated or long-term occupational exposure.

Long-term exposure to respiratory irritants may result in disease of the airways involving difficult breathing and related systemic problems.

Skin contact with the material is more likely to cause a sensitization reaction in some persons compared to the general population.

Long term exposure to high dust concentrations may cause changes in lung function i.e. pneumoconiosis; caused by particles less than 0.5 micron penetrating and remaining in the lung. Prime symptom is breathlessness; lung shadows show on X-ray.

High levels of molybdenum can cause joint problems in the hands and feet with pain and lameness. Molybdenum compounds can also cause liver changes with elevated levels of enzymes and cause over-activity of the thyroid gland. A generalized feeling of unwellness can occur, with tiredness, weakness, diarrhoea, loss of appetite and weight. Molybdenum has been associated with cancers of the airways, but on the other hand, a low intake of molybdenum may cause an increased risk of developing oesophageal cancer.

Section 3 - COMPOSITION / INFORMATION ON INGREDIENTS						
NAME	CAS RN	%				
Ammonium molybdate tetrahydrate	12054-85-2	100				

Section 4 - FIRST AID MEASURES

SWALLOWED

- IF SWALLOWED, REFER FOR MEDICAL ATTENTION, WHERE POSSIBLE, WITHOUT DELAY.
- For advice, contact a Poisons Information Centre or a doctor.
- Urgent hospital treatment is likely to be needed.
- In the mean time, qualified first-aid personnel should treat the patient following observation and employing supportive measures as indicated by the patient's condition.
- If the services of a medical officer or medical doctor are readily available, the patient should be placed in his/her care and a copy of the MSDS should be provided. Further action will be the responsibility of the medical specialist.
- If medical attention is not available on the worksite or surroundings send the patient to a hospital together with a copy of the MSDS.

Where medical attention is not immediately available or where the patient is more than 15 minutes from a hospital or unless instructed otherwise

 INDUCE vomiting with fingers down the back of the throat, ONLY IF CONSCIOUS. Lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration.

NOTE Wear a protective glove when inducing vomiting by mechanical means.

EYE

If this product comes in contact with the eyes

- Wash out immediately with fresh running water.
- Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the
 upper and lower lids.
- Seek medical attention without delay; if pain persists or recurs seek medical attention.
- Removal of contact lenses after an eye injury should only be undertaken by skilled personnel.

SKIN

If skin contact occurs

- Immediately remove all contaminated clothing, including footwear.
- Flush skin and hair with running water (and soap if available).
- Seek medical attention in event of irritation.

INHALED

- If fumes or combustion products are inhaled remove from contaminated area.
- Lay patient down. Keep warm and rested.
- Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures.
- Apply artificial respiration if not breathing, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained. Perform CPR if necessary.
- Transport to hospital, or doctor, without delay.

NOTES TO PHYSICIAN

■ for poisons (where specific treatment regime is absent)

BASIC TREATMENT

- Establish a patent airway with suction where necessary.
- Watch for signs of respiratory insufficiency and assist ventilation as necessary.
- Administer oxygen by non-rebreather mask at 10 to 15 L/min.
- Monitor and treat, where necessary, for pulmonary oedema.
- Monitor and treat, where necessary, for shock.
- Anticipate seizures .
- DO NOT use emetics. Where ingestion is suspected rinse mouth and give up to 200 ml water (5 ml/kg recommended) for dilution
 where patient is able to swallow, has a strong gag reflex and does not drool.

ADVANCED TREATMENT

- Consider orotracheal or nasotracheal intubation for airway control in unconscious patient or where respiratory arrest has occurred.
- Positive-pressure ventilation using a bag-valve mask might be of use.
- Monitor and treat, where necessary, for arrhythmias.
- Start an IV D5W TKO. If signs of hypovolaemia are present use lactated Ringers solution. Fluid overload might create complications.
- Drug therapy should be considered for pulmonary oedema.
- Hypotension with signs of hypovolaemia requires the cautious administration of fluids. Fluid overload might create complications.
- Treat seizures with diazepam.
- Proparacaine hydrochloride should be used to assist eye irrigation.

BRONSTEIN, A.C. and CURRANCE, P.L.

EMERGENCY CARE FOR HAZARDOUS MATERIALS EXPOSURE 2nd Ed. 1994.

Treat symptomatically.

Section	5 - F	IRF FI	GHTING	MEASI	URFS

Vapor Pressure (mmHG)

Not applicable.

Upper Explosive Limit (%)	Not applicable
Specific Gravity (water=1)	2.3 - 2.4
Lower Explosive Limit (%)	Not applicable

EXTINGUISHING MEDIA

- There is no restriction on the type of extinguisher which may be used.
- Use extinguishing media suitable for surrounding area.

FIRE FIGHTING

- Alert Fire Brigade and tell them location and nature of hazard.
- Wear breathing apparatus plus protective gloves for fire only.
- Prevent, by any means available, spillage from entering drains or water courses.
- Use fire fighting procedures suitable for surrounding area.
- DO NOT approach containers suspected to be hot.
- Cool fire exposed containers with water spray from a protected location.
- If safe to do so, remove containers from path of fire.
- Equipment should be thoroughly decontaminated after use.

GENERAL FIRE HAZARDS/HAZARDOUS COMBUSTIBLE PRODUCTS

- Non combustible
- Not considered a significant fire risk, however containers may burn.

Decomposition may produce toxic fumes of nitrogen oxides (NOx), metal oxides.

May emit poisonous fumes.

May emit corrosive fumes.

FIRE INCOMPATIBILITY

None known.

Section 6 - ACCIDENTAL RELEASE MEASURES

MINOR SPILLS

- · Remove all ignition sources.
- Clean up all spills immediately.
- Avoid contact with skin and eyes.
- Control personal contact by using protective equipment.
- Use dry clean up procedures and avoid generating dust.
- Place in a suitable, labelled container for waste disposal.

MAJOR SPILLS

Moderate hazard.

- CAUTION Advise personnel in area.
- Alert Emergency Services and tell them location and nature of hazard.
- · Control personal contact by wearing protective clothing.
- Prevent, by any means available, spillage from entering drains or water courses.
- Recover product wherever possible.
- IF DRY Use dry clean up procedures and avoid generating dust. Collect residues and place in sealed plastic bags or other containers for disposal. IF WET Vacuum/shovel up and place in labelled containers for disposal.
- ALWAYS Wash area down with large amounts of water and prevent runoff into drains.
- If contamination of drains or waterways occurs, advise Emergency Services.

Section 7 - HANDLING AND STORAGE

PROCEDURE FOR HANDLING

- Avoid all personal contact, including inhalation.
- Wear protective clothing when risk of exposure occurs.
- Use in a well-ventilated area.
- Prevent concentration in hollows and sumps.
- DO NOT enter confined spaces until atmosphere has been checked.
- DO NOT allow material to contact humans, exposed food or food utensils.
- Avoid contact with incompatible materials.
- When handling, DO NOT eat, drink or smoke.
- Keep containers securely sealed when not in use.
- Avoid physical damage to containers.
- Always wash hands with soap and water after handling.
- Work clothes should be laundered separately. Launder contaminated clothing before re-use.
- Use good occupational work practice.
- Observe manufacturer's storing and handling recommendations.

• Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions are maintained.

RECOMMENDED STORAGE METHODS

- Polyethylene or polypropylene container.
- Check all containers are clearly labelled and free from leaks.

STORAGE REQUIREMENTS

- · Store in original containers.
- Keep containers securely sealed.
- Store in a cool, dry, well-ventilated area.
- Store away from incompatible materials and foodstuff containers.
- Protect containers against physical damage and check regularly for leaks.
- Observe manufacturer's storing and handling recommendations.

Section 8 - EXPOSURE CONTROLS / PERSONAL PROTECTION

EXPOSURE CONTROLS

Source	Material		TWA mg/m³		STEL mg/m³	Peak mg/m³	TWA F/CC	Notes
Canada - Yukon Permissible Concentrations for Airborne Contaminant Substances	ammonium molybdate (Molybdenum (as Mo) - Soluble compounds)	-	5	-	10			
US - Vermont Permissible Exposure Limits Table Z-1-A Transitional Limits for Air Contaminants	ammonium molybdate (Molybdenum (as Mo) - Total dust)		15					
US - Vermont Permissible Exposure Limits Table Z-1-A Final Rule Limits for Air Contaminants	ammonium molybdate (Molybdenum (as Mo) - Total dust)		10					
US - Idaho - Limits for Air Contaminants	ammonium molybdate (Molybdenum (as Mo) Insoluble compounds)		5					
US - Minnesota Permissible Exposure Limits (PELs)	ammonium molybdate (Molybdenum (as Mo) - Soluble compounds)		5					
US - Tennessee Occupational Exposure Limits - Limits For Air Contaminants	ammonium molybdate (Molybdenum (as Mo) Soluble compounds)		5					
US - Vermont Permissible Exposure Limits Table Z-1-A Final	ammonium molybdate (Molybdenum (as Mo) - Soluble		5					

Rule Limits for Air Contaminants	compounds)				
US - Vermont Permissible Exposure Limits Table Z-1-A Transitional Limits for Air Contaminants	ammonium molybdate (Molybdenum (as Mo) - Soluble compounds)		5		
US - Hawaii Air Contaminant Limits	ammonium molybdate (Molybdenum (as Mo) Soluble compounds)		5	10	
US - Alaska Limits for Air Contaminants	ammonium molybdate (Molybdenum (as Mo) Soluble compounds)	5			
US - Washington Permissible exposure limits of air contaminants	ammonium molybdate (Molybdenum (as Mo) - Soluble compounds)		5	10	
Canada - Saskatchewan Occupational Health and Safety Regulations - Contamination Limits	ammonium molybdate (Molybdenum, (as Mo) Soluble compounds, (respirable fraction++))		0.5	1.5	
Canada - Nova Scotia Occupational Exposure Limits	ammonium molybdate (Molybdenum - Soluble compounds (as Mo))		0.5		TLV Basis lower respiratory tract irritation
US OSHA Permissible Exposure Levels (PELs) - Table Z1	ammonium molybdate (Molybdenum (as Mo) - Soluble compounds)		5		
US - Michigan Exposure Limits for Air Contaminants	ammonium molybdate (Molybdenum, (as Mo) Soluble compounds)		5		
Canada - Northwest Territories Occupational Exposure Limits (English)	ammonium molybdate (Molybdenum (as Mo) Soluble compounds)		5	10	

Canada - Alberta Occupational Exposure Limits	ammonium molybdate (Molybdenum, as Mo - Soluble compounds, respirable)	0.5	
US ACGIH Threshold Limit Values (TLV)	ammonium molybdate (Molybdenum, as Mo Soluble compounds)	0.5	TLV® Basis LRT irr
US - California Permissible Exposure Limits for Chemical Contaminants	ammonium molybdate (Molybdenum, soluble compounds, as Mo)	0.5	(n)
Canada - British Columbia Occupational Exposure Limits	ammonium molybdate (Molybdenum - Soluble compounds, as Mo, Respirable)	0.5	
Canada - Prince Edward Island Occupational Exposure Limits	ammonium molybdate (Molybdenum, as Mo Soluble compounds)	0.5	TLV® Basis LRT irr
US - Oregon Permissible Exposure Limits (Z-1)	ammonium molybdate (Molybdenum (soluble compounds))	- 5	Bold print identifies substances for which the Oregon Permissible Exposure Limits (PELs) are different than the federal Limits.
Canada - Quebec Permissible Exposure Values for Airborne Contaminants (English)	ammonium molybdate (Molybdenum (as Mo) Soluble compounds)	5	
US - Wyoming Toxic and Hazardous Substances Table Z1 Limits for Air Contaminants	ammonium molybdate (Molybdenum (as Mo)- Soluble compounds)	5	

PERSONAL PROTECTION

RESPIRATOR

Particulate. (AS/NZS 1716 & 1715, EN 1432000 & 1492001, ANSI Z88 or national equivalent)

EYE

- Safety glasses with side shields.
- · Chemical goggles.
- Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lens or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59]. [AS/NZS 1336 or national equivalent]

HANDS/FEET

NOTE

- The material may produce skin sensitization in predisposed individuals. Care must be taken, when removing gloves and other protective equipment, to avoid all possible skin contact.
- Contaminated leather items, such as shoes, belts and watch-bands should be removed and destroyed.

Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include

- frequency and duration of contact,
- chemical resistance of glove material,
- glove thickness and
- dexterity

Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739, AS/NZS 2161.1 or national equivalent).

- When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended.
- When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended.
- Contaminated gloves should be replaced.

Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.

Experience indicates that the following polymers are suitable as glove materials for protection against undissolved, dry solids, where abrasive particles are not present.

- polychloroprene
- nitrile rubber
- butyl rubber
- fluorocaoutchouc
- polyvinyl chloride

Gloves should be examined for wear and/ or degradation constantly.

OTHER

- Overalls.
- P.V.C. apron.
- Barrier cream.
- Skin cleansing cream.
- Eye wash unit.

ENGINEERING CONTROLS

■ Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection.

The basic types of engineering controls are

Process controls which involve changing the way a job activity or process is done to reduce the risk.

Enclosure and/or isolation of emission source which keeps a selected hazard "physically" away from the worker and ventilation that strategically "adds" and "removes" air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use.

Employers may need to use multiple types of controls to prevent employee overexposure.

- Local exhaust ventilation is required where solids are handled as powders or crystals; even when particulates are relatively large, a
 certain proportion will be powdered by mutual friction.
- If in spite of local exhaust an adverse concentration of the substance in air could occur, respiratory protection should be considered.

Such protection might consist of

(a) particle dust respirators, if necessary, combined with an absorption cartridge;

velocities are multiplied by factors of 10 or more when extraction systems are installed or used.

- (b) filter respirators with absorption cartridge or canister of the right type;
- (c) fresh-air hoods or masks.

Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to effectively remove the contaminant.

Type of Contaminant	Air Speed
direct spray, spray painting in shallow booths, drum filling, conveyer loading, crusher dusts, gas discharge (active generation into zone of rapid air motion)	1-2.5 m/s (200-500 f/min.)
grinding, abrasive blasting, tumbling, high speed wheel generated dusts (released at high initial velocity into zone of very high rapid air motion).	2.5-10 m/s (500-2000 f/min.)
Within each range the appropriate value depends on	
Lower end of the range	Upper end of the range
1 Room air currents minimal or favorable to capture	1 Disturbing room air currents
2 Contaminants of low toxicity or of nuisance value only.	2 Contaminants of high toxicity
3 Intermittent, low production.	3 High production, heavy use

4 Large hood or large air mass in motion

4 Small hood-local control only

Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 4-10 m/s (800-2000 f/min) for extraction of crusher dusts generated 2 metres distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air

Section 9 - PHYSICAL AND CHEMICAL PROPERTIES

PHYSICAL PROPERTIES

Solid.

Mixes with water.

State	Divided solid	Molecular Weight	1235.86
Melting Range (°F)	194 (-H2O)	Viscosity	Not Applicable
Boiling Range (°F)	Not available	Solubility in water (g/L)	Miscible
Flash Point (°F)	Not Applicable	pH (1% solution)	5.0-5.5 (5%)
Decomposition Temp (°F)	374	pH (as supplied)	Not applicable
Autoignition Temp (°F)	Not applicable	Vapor Pressure (mmHG)	Not applicable.
Upper Explosive Limit (%)	Not applicable	Specific Gravity (water=1)	2.3 - 2.4
Lower Explosive Limit (%)	Not applicable	Relative Vapor Density (air=1)	Not applicable.
Volatile Component (%vol)	Nil @ 38 C.	Evaporation Rate	Not Applicable

APPEARANCE

Powder or crystals; mixes with water. Insoluble in alcohol. Ammonium molybdate based on (MoO4)(2-) should not be confused with a similarly called substance (also known as ammonium dimolybdate) based on so-called (and equally confused) molybdic acid (85%).

Section 10 - CHEMICAL STABILITY

CONDITIONS CONTRIBUTING TO INSTABILITY

- · Presence of incompatible materials.
- Product is considered stable.
- Hazardous polymerisation will not occur.

STORAGE INCOMPATIBILITY

- Metals and their oxides or salts may react violently with chlorine trifluoride and bromine trifluoride.
- These trifluorides are hypergolic oxidizers. They ignites on contact (without external source of heat or ignition) with recognised fuels contact with these materials, following an ambient or slightly elevated temperature, is often violent and may produce ignition.

- The state of subdivision may affect the results.
- WARNING Avoid or control reaction with peroxides. All transition metal peroxides should be considered as potentially explosive. For
 example transition metal complexes of alkyl hydroperoxides may decompose explosively.
- The pi-complexes formed between chromium(0), vanadium(0) and other transition metals (haloarene-metal complexes) and mono-or
 poly-fluorobenzene show extreme sensitivity to heat and are explosive.
- Avoid reaction with borohydrides or cyanoborohydrides

For incompatible materials - refer to Section 7 - Handling and Storage.

Section 11 - TOXICOLOGICAL INFORMATION

ammonium molybdate

TOXICITY AND IRRITATION

AMMONIUM MOLYBDATE

■ unless otherwise specified data extracted from RTECS - Register of Toxic Effects of Chemical Substances.

TOXICITY IRRITATION

Oral (rat) LD50 333 mg/kg

Nil Reported

■ Asthma-like symptoms may continue for months or even years after exposure to the material ceases. This may be due to a non-allergenic condition known as reactive airways dysfunction syndrome (RADS) which can occur following exposure to high levels of highly irritating compound. Key criteria for the diagnosis of RADS include the absence of preceding respiratory disease, in a non-atopic individual, with abrupt onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the irritant. A reversible airflow pattern, on spirometry, with the presence of moderate to severe bronchial hyperreactivity on methacholine challenge testing and the lack of minimal lymphocytic inflammation, without eosinophilia, have also been included in the criteria for diagnosis of RADS. RADS (or asthma) following an irritating inhalation is an infrequent disorder with rates related to the concentration of and duration of exposure to the irritating substance. Industrial bronchitis, on the other hand, is a disorder that occurs as result of exposure due to high concentrations of irritating substance (often particulate in nature) and is completely reversible after exposure ceases. The disorder is characterised by dyspnea, cough and mucus production.

Contact allergies quickly manifest themselves as contact eczema, more rarely as urticaria or Quincke's oedema. The pathogenesis of contact eczema involves a cell-mediated (T lymphocytes) immune reaction of the delayed type. Other allergic skin reactions, e.g. contact urticaria, involve antibody-mediated immune reactions. The significance of the contact allergen is not simply determined by its sensitization potential the distribution of the substance and the opportunities for contact with it are equally important. A weakly sensitizing substance which is widely distributed can be a more important allergen than one with stronger sensitizing potential with which few individuals come into contact. From a clinical point of view, substances are noteworthy if they produce an allergic test reaction in more than 1% of the persons tested.

For ammonium dimolybdate (CAS 27546-07-2)

Positive reaction in 20% of experimental animals (OECD 406; GPMT according to Magnusoon-Kligman

CARCINOGEN

OAROINOOLI			
Molybdenum, as Mo Soluble compounds	US ACGIH Threshold Limit Values (TLV) - Carcinogens	Carcinogen Category	A3
ammonium molybdate	US - Maine Chemicals of High Concern List	Carcinogen	A3
ammonium molybdate	Canada - Prince Edward Island Occupational Exposure Limits - Carcinogens	Notes	TLV® Basis LRT irr
ammonium molybdate	Canada - Prince Edward Island Occupational Exposure Limits - Carcinogens	Notes	TLV Basis lower respiratory tract irritation

Section 12 - ECOLOGICAL INFORMATION

Harmful to aquatic organisms, may cause long-term adverse effects in the aquatic environment.

Ecotoxicity

Ingredient	Persistence: Water/Soil	Persistence: Air	Bioaccumulation	Mobility
ammonium molybdate	No Data Available	No Data Available		

Section 13 - DISPOSAL CONSIDERATIONS

Disposal Instructions

All waste must be handled in accordance with local, state and federal regulations.

- Containers may still present a chemical hazard/ danger when empty.
- Return to supplier for reuse/ recycling if possible.

Otherwise

- If container can not be cleaned sufficiently well to ensure that residuals do not remain or if the container cannot be used to store the same product, then puncture containers, to prevent re-use, and bury at an authorized landfill.
- Where possible retain label warnings and MSDS and observe all notices pertaining to the product.

Legislation addressing waste disposal requirements may differ by country, state and/ or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked.

A Hierarchy of Controls seems to be common - the user should investigate:

- Reduction
- Reuse
- Recycling
- Disposal (if all else fails)

This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. Shelf life considerations should also be applied in making decisions of this type. Note that properties of a material may change in use, and recycling or reuse may not always be appropriate. In most instances the supplier of the material should be consulted.

- DO NOT allow wash water from cleaning or process equipment to enter drains.
- It may be necessary to collect all wash water for treatment before disposal.
- In all cases disposal to sewer may be subject to local laws and regulations and these should be considered first.
- Where in doubt contact the responsible authority.
- Recycle wherever possible or consult manufacturer for recycling options.
- Consult State Land Waste Management Authority for disposal.
- Bury residue in an authorized landfill.
- Recycle containers if possible, or dispose of in an authorized landfill.

Section 14 - TRANSPORTATION INFORMATION

NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS: DOT, IATA, IMDG

Section 15 - REGULATORY INFORMATION

ammonium molybdate (CAS: 13106-76-8,12054-85-2) is found on the following regulatory lists;

"Canada - Saskatchewan Industrial Hazardous Substances", "Canada CEPA Environmental Registry Substance Lists - List of substances on the DSL that meet the ecological criteria for categorization (English)", "Canada Domestic Substances List (DSL)", "Canada Ingredient Disclosure List (SOR/88-64)", "Canada Toxicological Index Service - Workplace Hazardous Materials Information System - WHMIS (English)", "US - New Jersey Right to Know Hazardous Substances", "US DOE Temporary Emergency Exposure Limits (TEELs)", "US Toxic Substances Control Act (TSCA) - Chemical Substance Inventory"

Section 16 - OTHER INFORMATION

Ingredients with multiple CAS Nos

Ingredient Name CAS

ammonium molybdate 13106-76-8, 12054-85-2

■ Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references.

A list of reference resources used to assist the committee may be found at:

www.chemwatch.net/references.

- The (M)SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.
- For detailed advice on Personal Protective Equipment, refer to the following U.S. Regulations and Standards: OSHA Standards 29 CFR:

1910.132 - Personal Protective Equipment - General requirements

1910.133 - Eye and face protection

1910.134 - Respiratory Protection

1910.136 - Occupational foot protection

1910.138 - Hand Protection

Eve and face protection - ANSI Z87.1

Foot protection - ANSI Z41

Respirators must be NIOSH approved.

This document is copyright. Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH. TEL (+61 3) 9572 4700.

www.Chemwatch.net

Issue Date: Apr-6-2009 Print Date:Feb-9-2012