Potassium Phosphate, Dibasic, Anhydrous

Material Safety Data Sheet

Hazard Alert Code Key:

EXTREME HIGH MODERATE LOW

Section 1 - CHEMICAL PRODUCT AND COMPANY IDENTIFICATION

PRODUCT NAME
Potassium Phosphate, Dibasic, Anhydrous

STATEMENT OF HAZARDOUS NATURE

SUPPLIER
Company: Santa Cruz Biotechnology, Inc.
Address:
2145 Delaware Ave
Santa Cruz, CA 95060
Telephone: 800.457.3801 or 831.457.3800
Emergency Tel: CHEMWATCH: From within the US and Canada: 877-715-9305
Emergency Tel: From outside the US and Canada: +888 2436 2255 (1-800-CHEMCALL) or call +613 9573 3112

PRODUCT USE
Food additive, fertiliser, buffer, humectant, pharmaceutical additive and laboratory reagent. Nutrient for penicillin culturing.

SYNONYMS

Section 2 - HAZARDS IDENTIFICATION

CANADIAN WHMIS SYMBOLS

EMERGENCY OVERVIEW
RISK
Irritating to eyes.
May cause long-term adverse effects in the aquatic environment.

POTENTIAL HEALTH EFFECTS
ACUTE HEALTH EFFECTS

SWALLOWED
■ Accidental ingestion of the material may be damaging to the health of the individual.
■ Acute potassium poisoning after swallowing is rare, because vomiting usually occurs and renal excretion is fast. Potassium
causes a slow, weak pulse, irregularities in heart rhythm, heart block and an eventual fall in blood pressure. Breathing initially becomes faster but the muscles of breathing eventually become paralyzed. There can be loss of appetite, extreme thirst, increased volumes of urine, fever, convulsions and gastric disturbances; death may then occur due to failure of breathing and inflammation of the stomach and bowel.

- As absorption of phosphates from the bowel is poor, poisoning this way is less likely. Effects can include vomiting, tiredness, fever, diarrhea, low blood pressure, slow pulse, cyanosis, spasms of the wrist, coma and severe body spasms.

EYE
- This material can cause eye irritation and damage in some persons.
- Alkaline salts may be intensely irritating to the eyes and precautions should be taken to ensure direct eye contact is avoided.

SKIN
- The material is not thought to produce adverse health effects or skin irritation following contact (as classified using animal models). Nevertheless, good hygiene practice requires that exposure be kept to a minimum and that suitable gloves be used in an occupational setting.
- Open cuts, abraded or irritated skin should not be exposed to this material.
- Entry into the blood-stream, through, for example, cuts, abrasions or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected.

INHALED
- The material is not thought to produce either adverse health effects or irritation of the respiratory tract following inhalation (as classified using animal models). Nevertheless, adverse effects have been produced following exposure of animals by at least one other route and good hygiene practice requires that exposure be kept to a minimum and that suitable control measures be used in an occupational setting.
- Persons with impaired respiratory function, airway diseases and conditions such as emphysema or chronic bronchitis, may incur further disability if excessive concentrations of particulate are inhaled.

CHRONIC HEALTH EFFECTS
- Limited evidence suggests that repeated or long-term occupational exposure may produce cumulative health effects involving organs or biochemical systems.
- Long term exposure to high dust concentrations may cause changes in lung function i.e. pneumoconiosis; caused by particles less than 0.5 micron penetrating and remaining in the lung. Prime symptom is breathlessness; lung shadows show on X-ray. Sodium phosphate dibasic can cause stones in the kidney, loss of mineral from the bones and loss of thyroid gland function.

Section 3 - COMPOSITION / INFORMATION ON INGREDIENTS

<table>
<thead>
<tr>
<th>NAME</th>
<th>CAS RN</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>potassium phosphate, dibasic</td>
<td>7758-11-4</td>
<td>> 97</td>
</tr>
</tbody>
</table>

HAZARD RATINGS

<table>
<thead>
<tr>
<th></th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flammability</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Toxicity</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Body Contact</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Reactivity</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Chronic</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

Section 4 - FIRST AID MEASURES

SWALLOWED
- If swallowed do NOT induce vomiting.
- If vomiting occurs, lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration.
- Observe the patient carefully.
- Never give liquid to a person showing signs of being sleepy or with reduced awareness; i.e. becoming unconscious.
- Give water to rinse out mouth, then provide liquid slowly and as much as casualty can comfortably drink.
- Seek medical advice.

EYE
- If this product comes in contact with the eyes:
 - Wash out immediately with fresh running water.
 - Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids.
 - If pain persists or recurs seek medical attention.
 - Removal of contact lenses after an eye injury should only be undertaken by skilled personnel.

SKIN
- If skin or hair contact occurs:
 - Flush skin and hair with running water (and soap if available).
 - Seek medical attention in event of irritation.

INHALED
- If dust is inhaled, remove from contaminated area.
- Encourage patient to blow nose to ensure clear passage of breathing.
- If irritation or discomfort persists seek medical attention.

NOTES TO PHYSICIAN
For potassium intoxications:

- Hyperkalemia, in patients with abnormal renal function, results from reduced renal excretion following intoxication.
- The presence of electrocardiographic evidence of hyperkalemia or serum potassium levels exceeding 7.5 mE/L indicates a medical emergency requiring an intravenous line and constant cardiac monitoring.
- The intravenous ingestion of 5-10 ml of 10% calcium gluconate, in adults, over a 2 minute period antagonizes the cardiac and neuromuscular effects. The duration of action is approximately 1 hours.

[Ellenhorn and Barceloux: Medical Toxicology].

Section 5 - FIRE FIGHTING MEASURES

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vapour Pressure (mmHG)</td>
<td>Not applicable</td>
</tr>
<tr>
<td>Upper Explosive Limit (%)</td>
<td>Not applicable</td>
</tr>
<tr>
<td>Specific Gravity (water=1)</td>
<td>1.24</td>
</tr>
<tr>
<td>Lower Explosive Limit (%)</td>
<td>Not applicable</td>
</tr>
</tbody>
</table>

EXTINGUISHING MEDIA

- There is no restriction on the type of extinguisher which may be used.
- Use extinguishing media suitable for surrounding area.

FIRE FIGHTING

- Alert Emergency Responders and tell them location and nature of hazard.
- Wear breathing apparatus plus protective gloves for fire only.
- Prevent, by any means available, spillage from entering drains or water course.
- Use fire fighting procedures suitable for surrounding area.
- Do not approach containers suspected to be hot.
- Cool fire exposed containers with water spray from a protected location.
- If safe to do so, remove containers from path of fire.
- Equipment should be thoroughly decontaminated after use.

GENERAL FIRE HAZARDS/HAZARDOUS COMBUSTIBLE PRODUCTS

- Non combustible.
- Not considered to be a significant fire risk, however containers may burn.
- Decomposition may produce toxic fumes of: phosphorus oxides (POx), metal oxides.
- May emit poisonous fumes.
- May emit corrosive fumes.

FIRE INCOMPATIBILITY

- None known.

PERSONAL PROTECTION

- **Glasses:** Chemical goggles.
- **Gloves:**
- **Respirator:** Particulate

Section 6 - ACCIDENTAL RELEASE MEASURES

MINOR SPILLS

- Remove all ignition sources.
- Clean up all spills immediately.
- Avoid contact with skin and eyes.
- Control personal contact by using protective equipment.
- Use dry clean up procedures and avoid generating dust.
- Place in a suitable, labelled container for waste disposal.

MAJOR SPILLS

- Moderate hazard.
- **CAUTION:** Advise personnel in area.
- Alert Emergency Responders and tell them location and nature of hazard.
- Control personal contact by wearing protective clothing.
- Prevent, by any means available, spillage from entering drains or water courses.
- Recover product wherever possible.
- **IF DRY:** Use dry clean up procedures and avoid generating dust. Collect residues and place in sealed plastic bags or other containers for disposal. IF WET: Vacuum/shovel up and place in labelled containers for disposal.
- **ALWAYS:** Wash area down with large amounts of water and prevent runoff into drains.
- If contamination of drains or waterways occurs, advise emergency services.

ACUTE EXPOSURE GUIDELINE LEVELS (AEGL) (in ppm)

- **AEGL 1:** The airborne concentration of a substance above which it is predicted that the general population, including susceptible individuals, could experience notable discomfort, irritation, or certain asymptomatic nonsensory effects. However, the effects are not disabling and are transient and reversible upon cessation of exposure.
- **AEGL 2:** The airborne concentration of a substance above which it is predicted that the general population, including susceptible individuals, could...
experience irreversible or other serious, long-lasting adverse health effects or an impaired ability to escape.

AEGL 3: The airborne concentration of a substance above which it is predicted that the general population, including susceptible individuals, could experience life-threatening health effects or death.

Section 7 - HANDLING AND STORAGE

PROCEDURE FOR HANDLING

- Avoid all personal contact, including inhalation.
- Wear protective clothing when risk of exposure occurs.
- Use in a well-ventilated area.
- Prevent concentration in hollows and sumps.
- DO NOT enter confined spaces until atmosphere has been checked.
- DO NOT allow material to contact humans, exposed food or food utensils.
- Avoid contact with incompatible materials.
- When handling, DO NOT eat, drink or smoke.
- Keep containers securely sealed when not in use.
- Avoid physical damage to containers.
- Always wash hands with soap and water after handling.
- Work clothes should be laundered separately.
- Launder contaminated clothing before re-use.
- Use good occupational work practice.
- Observe manufacturer's storing and handling recommendations.
- Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions are maintained.

RECOMMENDED STORAGE METHODS

- Glass container.
- Polyethylene or polypropylene container.
- Check all containers are clearly labelled and free from leaks.

STORAGE REQUIREMENTS

- Store in original containers.
- Keep containers securely sealed.
- Store in a cool, dry, well-ventilated area.
- Store away from incompatible materials and foodstuff containers.
- Protect containers against physical damage and check regularly for leaks.
- Observe manufacturer's storing and handling recommendations.

SAFE STORAGE WITH OTHER CLASSIFIED CHEMICALS

![Storage Compatibility Chart]

X: Must not be stored together
O: May be stored together with specific preventions
+: May be stored together

Section 8 - EXPOSURE CONTROLS / PERSONAL PROTECTION

EXPOSURE CONTROLS

<table>
<thead>
<tr>
<th>Source</th>
<th>Material</th>
<th>TWA ppm</th>
<th>TWA mg/m³</th>
<th>STEL ppm</th>
<th>STEL mg/m³</th>
<th>Peak ppm</th>
<th>Peak mg/m³</th>
<th>TWA F/CC</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>US - Oregon Permissible Exposure Limits (Z3)</td>
<td>potassium phosphate, dibasic (Inert or Nuisance Dust: (d) Total dust)</td>
<td>10</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>US OSHA Permissible Exposure Levels (PELs) - Table Z3</td>
<td>potassium phosphate, dibasic (Inert or Nuisance Dust: (d) Respirable fraction)</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>US OSHA Permissible Exposure Levels (PELs) - Table Z3</td>
<td>potassium phosphate, dibasic (Inert or Nuisance Dust: (d) Total dust)</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>US - Hawaii Air Contaminant Limits</td>
<td>potassium phosphate, dibasic (Particulates not other wise regulated - Total dust)</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>US - Hawaii Air Contaminant Limits</td>
<td>potassium phosphate, dibasic (Particulates not other wise regulated - Respirable fraction)</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
MATERIAL DATA
POTASSIUM PHOSPHATE, DIBASIC:
- It is the goal of the ACGIH (and other Agencies) to recommend TLVs (or their equivalent) for all substances for which there is evidence of health effects at airborne concentrations encountered in the workplace. At this time no TLV has been established, even though this material may produce adverse health effects (as evidenced in animal experiments or clinical experience). Airborne concentrations must be maintained as low as is practically possible and occupational exposure must be kept to a minimum.

NOTE: The ACGIH occupational exposure standard for Particles Not Otherwise Specified (P.N.O.S) does NOT apply. Sensory irritants are chemicals that produce temporary and undesirable side-effects on the eyes, nose or throat. Historically occupational exposure standards for these irritants have been based on observation of workers' responses to various airborne concentrations. Present day expectations require that nearly every individual should be protected against even minor sensory irritation and exposure standards are established using uncertainty factors or safety factors of 5 to 10 or more. On occasion animal no-observable-effect-levels (NOEL) are used to determine these limits where human results are unavailable. An additional approach, typically used by the TLV committee (USA) in determining respiratory standards for this group of chemicals, has been to assign ceiling values (TLV C) to rapidly acting irritants and to assign short-term exposure limits (TLV STELs) when the weight of evidence from irritation, bioaccumulation and other endpoints combine to warrant such a limit. In contrast the MAK Commission (Germany) uses a five-category system based on intensive odour, local irritation, and elimination half-life. However this system is being replaced to be consistent with the European Union (EU) Scientific Committee for Occupational Exposure Limits (SCOEL); this is more closely allied to that of the USA. OSHA (USA) concluded that exposure to sensory irritants can:
 - cause inflammation
 - cause increased susceptibility to other irritants and infectious agents
 - lead to permanent injury or dysfunction
 - permit greater absorption of hazardous substances and
 - acclimate the worker to the irritant warning properties of these substances thus increasing the risk of overexposure.

PERSONAL PROTECTION

Consult your EHS staff for recommendations

EYE
- Safety glasses with side shields.
- Chemical goggles.
- Contact lenses pose a special hazard; soft lenses may absorb irritants and all lenses concentrate them. DO NOT wear contact lenses.

HANDS/FEET
- Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include: such as:
 - frequency and duration of contact,
 - chemical resistance of glove material,
 - glove thickness and
 - dexterity
- Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739).
 - When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374) is recommended.
 - When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374) is recommended.
 - Contaminated gloves should be replaced.

Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.

Experience indicates that the following polymers are suitable as glove materials for protection against undissolved, dry solids, where abrasive particles are not present:
- polychloroprene
- nitrile rubber
- butyl rubber
- fluorocauchochouc
- polyvinyl chloride

Gloves should be examined for wear and/ or degradation constantly.

OTHER
Overalls.
P.V.C. apron.
Barrier cream.
Skin cleansing cream.
Eye wash unit.

Respirators may be necessary when engineering and administrative controls do not adequately prevent exposures.
The decision to use respiratory protection should be based on professional judgment that takes into account toxicity
information, exposure measurement data, and frequency and likelihood of the worker's exposure - ensure users are not
subject to high thermal loads which may result in heat stress or distress due to personal protective equipment (powered,
positive flow, full face apparatus may be an option).
Published occupational exposure limits, where they exist, will assist in determining the adequacy of the selected respiratory
. These may be government mandated or vendor recommended.
Certified respirators will be useful for protecting workers from inhalation of particulates when properly selected and fit tested
as part of a complete respiratory protection program.
Use approved positive flow mask if significant quantities of dust becomes airborne.
Try to avoid creating dust conditions.

RESPIRATOR

<table>
<thead>
<tr>
<th>Protection Factor</th>
<th>Half-Face Respirator</th>
<th>Full-Face Respirator</th>
<th>Powered Air Respirator</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 x PEL</td>
<td>P1</td>
<td>-</td>
<td>PAPR-P1</td>
</tr>
<tr>
<td>50 x PEL</td>
<td>Air-line*</td>
<td>P2</td>
<td>PAPR-P2</td>
</tr>
<tr>
<td>100 x PEL</td>
<td>-</td>
<td>P3</td>
<td>-</td>
</tr>
<tr>
<td>100+ x PEL</td>
<td>Air-line**</td>
<td>-</td>
<td>Air-line**</td>
</tr>
</tbody>
</table>

* - Negative pressure demand ** - Continuous flow

Explanation of Respirator Codes:
Class 1 low to medium absorption capacity filters.
Class 2 medium absorption capacity filters.
Class 3 high absorption capacity filters.
PAPR Powered Air Purifying Respirator (positive pressure) cartridge.
Type A for use against certain organic gases and vapors.
Type AX for use against low boiling point organic compounds (less than 65°C).
Type B for use against certain inorganic acid gases and other acid gases and vapors.
Type E for use against sulfur dioxide and other acid gases and vapors.
Type K for use against ammonia and organic ammonia derivatives
Class P1 intended for use against mechanically generated particulates of sizes most commonly encountered in industry, e.g.
asbestos, silica.
Class P2 intended for use against both mechanically and thermally generated particulates, e.g. metal fume.
Class P3 intended for use against all particulates containing highly toxic materials, e.g. beryllium.
The local concentration of material, quantity and conditions of use determine the type of personal protective equipment
required.
Use appropriate NIOSH-certified respirator based on informed professional judgement. In conditions where no reasonable
estimate of exposure can be made, assume the exposure is in concentration IDLH and use NIOSH-certified full face
pressure demand SCBA with a minimum service life of 30 minutes, or a combination full facepiece pressure demand SAR with
auxiliary self-contained air supply. Respirators provided only for escape from IDLH atmospheres shall be NIOSH-certified for
escape from the atmosphere in which they will be used.

ENGINEERING CONTROLS

Local exhaust ventilation is required where solids are handled as powders or crystals; even when particulates are relatively
large, a certain proportion will be powdered by mutual friction.
If in spite of local exhaust an adverse concentration of the substance in air could occur, respiratory protection should be
considered.

Such protection might consist of:
(a): particle dust respirators, if necessary, combined with an absorption cartridge;
(b): filter respirators with absorption cartridge or canister of the right type;
(c): fresh-air hoods or masks

Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to effectively remove the contaminant.

Type of Contaminant: Air Speed:
direct spray, spray painting in shallow booths, drum filling, conveyor loading, crusher dusts, gas discharge (active
generation into zone of rapid air motion) 1-2.5 m/s (200-500 ft/min.)

grinding, abrasive blasting, tumbling, high speed wheel generated dusts (released at high initial velocity into zone of
very high rapid air motion). 2.5-10 m/s (500-2000 ft/min.)

Within each range the appropriate value depends on:

<table>
<thead>
<tr>
<th>Lower end of the range</th>
<th>Upper end of the range</th>
</tr>
</thead>
<tbody>
<tr>
<td>1: Room air currents minimal or favorable to capture</td>
<td>1: Disturbing room air currents</td>
</tr>
<tr>
<td>2: Contaminants of low toxicity or of nuisance value only.</td>
<td>2: Contaminants of high toxicity</td>
</tr>
<tr>
<td>3: Intermittent, low production.</td>
<td>3: High production, heavy use</td>
</tr>
<tr>
<td>4: Large hood or large air mass in motion</td>
<td>4: Small hood-local control only</td>
</tr>
</tbody>
</table>

Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity
generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the
extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at
the extraction fan, for example, should be a minimum of 4-10 m/s (800-2000 ft/min) for extraction of crusher dusts generated 2
meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used.

Section 9 - PHYSICAL AND CHEMICAL PROPERTIES

PHYSICAL PROPERTIES

<table>
<thead>
<tr>
<th>State</th>
<th>Divided solid</th>
<th>Molecular Weight</th>
<th>174.18</th>
</tr>
</thead>
<tbody>
<tr>
<td>Melting Range (°F)</td>
<td>>869</td>
<td>Viscosity</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>Boiling Range (°F)</td>
<td>Not available.</td>
<td>Solubility in water (g/L)</td>
<td>Miscible</td>
</tr>
<tr>
<td>Flash Point (°F)</td>
<td>Not applicable</td>
<td>pH (1% solution)</td>
<td>9.0-9.2 (5% sol)</td>
</tr>
<tr>
<td>Decomposition Temp (°F)</td>
<td>Not available.</td>
<td>pH (as supplied)</td>
<td>Not applicable</td>
</tr>
<tr>
<td>Autoignition Temp (°F)</td>
<td>Not applicable</td>
<td>Vapour Pressure (mmHG)</td>
<td>Not applicable</td>
</tr>
<tr>
<td>Upper Explosive Limit (%)</td>
<td>Not applicable</td>
<td>Specific Gravity (water=1)</td>
<td>1.24</td>
</tr>
<tr>
<td>Lower Explosive Limit (%)</td>
<td>Not applicable</td>
<td>Relative Vapor Density (air=1)</td>
<td>Not applicable</td>
</tr>
<tr>
<td>Volatile Component (%vol)</td>
<td>Not applicable</td>
<td>Evaporation Rate</td>
<td>Not applicable</td>
</tr>
</tbody>
</table>

APPEARANCE

Hygroscopic, white crystals or powder; very soluble in water, converted to pyrophosphate by ignition. Commercial forms: anhydrous or trihydrate salt.

Section 10 - CHEMICAL STABILITY

CONDITIONS CONTRIBUTING TO INSTABILITY

- Presence of incompatible materials.
- Product is considered stable.
- Hazardous polymerization will not occur.

STORAGE INCOMPATIBILITY

- Metals and their oxides or salts may react violently with chlorine trifluoride. Chlorine trifluoride is a hypergolic oxidizer. It ignites on contact (without external source of heat or ignition) with recognized fuels - contact with these materials, following an ambient or slightly elevated temperature, is often violent and may produce ignition. The state of subdivision may affect the results.
- Phosphates are incompatible with oxidizing and reducing agents.
- Phosphates are susceptible to formation of highly toxic and flammable phosphine gas in the presence of strong reducing agents such as hydrides.
- Partial oxidation of phosphates by oxidizing agents may result in the release of toxic phosphorus oxides.

For incompatible materials - refer to Section 7 - Handling and Storage.

Section 11 - TOXICOLOGICAL INFORMATION

potassium phosphate, dibasic

TOXICITY AND IRRITATION

- No significant acute toxicological data identified in literature search.

Section 12 - ECOLOGICAL INFORMATION

Refer to data for ingredients, which follows:

POTASSIUM PHOSPHATE, DIBASIC:

- May cause long-term adverse effects in the aquatic environment.
- Do NOT allow product to come in contact with surface waters or to intertidal areas below the mean high water mark. Do not contaminate water when cleaning equipment or disposing of equipment wash-waters.
- Wastes resulting from use of the product must be disposed of on site or at approved waste sites.
- The principal problems of phosphate contamination of the environment relates to eutrophication processes in lakes and ponds. Phosphorus is an essential plant nutrient and is usually the limiting nutrient for blue-green algae. A lake undergoing eutrophication shows a rapid growth of algae in surface waters. Planktonic algae cause turbidity and flotation films. Shore algae cause ugly muddying, films and damage to reeds. Decay of these algae causes oxygen depletion in the deep water and shallow water near the shore. The process is self-perpetuating because anoxic conditions at the sediment/water interface causes the release of more adsorbed phosphates from the sediment. The growth of algae produces undesirable effects on the treatment of water for drinking purposes, on fisheries, and on the use of lakes for recreational purposes.
- DO NOT discharge into sewer or waterways.

Section 13 - DISPOSAL CONSIDERATIONS

Disposal Instructions
All waste must be handled in accordance with local, state and federal regulations. Legislation addressing waste disposal requirements may differ by country, state and/or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked. A Hierarchy of Controls seems to be common - the user should investigate:
- Reduction
- Reuse
- Recycling
- Disposal (if all else fails)

This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. Shelf life considerations should also be applied in making decisions of this type. Note that properties of a material may change in use, and recycling or reuse may not always be appropriate.

DO NOT allow wash water from cleaning equipment to enter drains. Collect all wash water for treatment before disposal.
- Recycle wherever possible or consult manufacturer for recycling options.
- Consult Waste Management Authority for disposal.
- Bury residue in an authorized landfill.
- Recycle containers where possible, or dispose of in an authorized landfill.

Section 14 - TRANSPORTATION INFORMATION

NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS: DOT, IATA, IMDG

Section 15 - REGULATORY INFORMATION

potassium phosphate, dibasic (CAS: 7758-11-4, 16788-57-1) is found on the following regulatory lists:
- Canada Domestic Substances List (DSL)
- Canada Toxicological Index Service - Workplace Hazardous Materials Information System - WHMIS (English)
- Canada Toxicological Index Service - Workplace Hazardous Materials Information System - WHMIS (French)
- OECD Representative List of High Production Volume (HPV) Chemicals
- US DOE Temporary Emergency Exposure Limits (TEELs)
- US FDA Direct Food Substances Generally Recognized as Safe
- US FDA Indirect Food Additives: Adhesives and Components of Coatings - Substances for Use Only as Components of Adhesives - Adhesives
- US Food Additive Database
- US Toxic Substances Control Act (TSCA) - Inventory

Section 16 - OTHER INFORMATION

LIMITED EVIDENCE
- Ingestion may produce health damage*
- Cumulative effects may result following exposure*
 * (limited evidence).

Ingredients with multiple CAS Nos

<table>
<thead>
<tr>
<th>Ingredient Name</th>
<th>CAS</th>
</tr>
</thead>
<tbody>
<tr>
<td>potassium phosphate, dibasic</td>
<td>7758-11-4, 16788-57-1</td>
</tr>
</tbody>
</table>

Reasonable care has been taken in the preparation of this information, but the author makes no warranty of merchantability or any other warranty, expressed or implied, with respect to this information. The author makes no representations and assumes no liability for any direct, incidental or consequential damages resulting from its use. For additional technical information please call our toxicology department on +800 CHEMCALL.

- Classification of the mixture and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references. A list of reference resources used to assist the committee may be found at: www.chemwatch.net/references.
- The (M)SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

This document is copyright. Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH. TEL (+61 3) 9572 4700.

Issue Date: Sep-14-2009
Print Date: Apr-21-2010