Temozolomide

sc-203292

Material Safety Data Sheet

The Power to Questio

Hazard Alert Code Key:

EXTREME

HIGH

MODERATE

LOW

Section 1 - CHEMICAL PRODUCT AND COMPANY IDENTIFICATION

PRODUCT NAME

Temozolomide

STATEMENT OF HAZARDOUS NATURE

CONSIDERED A HAZARDOUS SUBSTANCE ACCORDING TO OSHA 29 CFR 1910.1200.

NFPA

SUPPLIER

Company: Santa Cruz Biotechnology, Inc.

Address:

2145 Delaware Ave Santa Cruz, CA 95060

Telephone: 800.457.3801 or 831.457.3800

Emergency Tel: CHEMWATCH: From within the US and

Canada: 877-715-9305

Emergency Tel: From outside the US and Canada: +800 2436

2255 (1-800-CHEMCALL) or call +613 9573 3112

PRODUCT USE

Antneopastic/ cytotoxic. Pro-drug of th alkylating agent MTIC Medicine

SYNONYMS

C6-H6-N6-O2, "8-carbamoyl-3-methylimidazo[5, 1-d]-1, 2, 3, 5-tetrazi", "8-carbamoyl-3-methylimidazo[5, 1-d]-1, 2, 3, 5-tetrazi", n-4(3H)-one, n-4(3H)-one, CCRG-8104, "3, 4-dihydro-3-methyl-4-oxoimidazo[5, 1-d]-1, 2, 3, 5-t", "3, 4-dihydro-3-methyl-4-oxoimidazo[5, 1-d]-1, 2, 3, 5-t", etrazine-8-carboxamide, etrazine-8-carboxamide, MB-39831, "M&B 39831", methazolastone, "3-methyl-4-oxo-3, 4-dihydroimidazo[5, 1-d](1, 2, 3, 5)tetrazine-8-", carboxamide, "3-methyl-4-oxo-3, 4-dihydroimidazo[5, 1-d](1, 2, 3, 5)tetrazine-8-", carboxamide, NSC-362856, Temador, Temodal, "antitumour imidazoltetrazine", "antineoplastic/ cytotoxic"

Section 2 - HAZARDS IDENTIFICATION

CANADIAN WHMIS SYMBOLS

EMERGENCY OVERVIEW

RISK

Risk of explosion by shock, friction, fire or other sources of ignition. Harmful if swallowed.

May cause CANCER.

May impair fertility.

May cause harm to the unborn child.

Irritating to eyes and skin.

POTENTIAL HEALTH EFFECTS **ACUTE HEALTH EFFECTS**

SWALLOWED

- Accidental ingestion of the material may be harmful; animal experiments indicate that ingestion of less than 150 gram may be fatal or may produce serious damage to the health of the individual.
- The killing action of antineoplastic drugs used for cancer chemotherapy is not selective for cancerous cells alone but affect all dividing cells. Acute side effects include loss of appetite, nausea and vomiting, allergic reaction (skin rash, itch, redness, low blood pressure, unwellness and anaphylactic shock) and local irritation. Gout and renal failure can occur.

■ This material can cause eye irritation and damage in some persons.

SKIN

- This material can cause inflammation of the skin oncontact in some persons.
- The material may accentuate any pre-existing dermatitis condition.
- Skin contact is not thought to produce harmful health effects (as classified using animal models). Systemic harm, however, has been identified following exposure of animals by at least one other route and the material may still produce health damage following entry through wounds, lesions or abrasions. Good hygiene practice requires that exposure be kept to a minimum and that suitable gloves be used in an occupational setting.
- Entry into the blood-stream, through, for example, cuts, abrasions or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected.

■ The material is not thought to produce either adverse health effects or irritation of the respiratory tract following inhalation (as classified using animal models). Nevertheless, adverse effects have been produced following exposure of animals by at least one other route and good hygiene practice requires that exposure be kept to a minimum and that suitable control measures be used in an occupational setting.

CHRONIC HEALTH EFFECTS

■ There is ample evidence that this material can be regarded as being able to cause cancer in humans based on experiments and other information.

Based on experiments and other information, there is ample evidence to presume that exposure to this material can cause genetic defects that can be inherited.

Ample evidence exists from experimentation that reduced human fertility is directly caused by exposure to the material.

Ample evidence exists, from results in experimentation, that developmental disorders are directly caused by human exposure

Anti-cancer drugs used for chemotherapy can depress the bone marrow with reduction in the number of white blood cells and platelets and bleeding. Susceptibility to infections and bleeding is increased, which can be life- threatening. Digestive system effects may include inflammation of the mouth cavity, mouth ulcers, esophagus inflammation, abdominal pain and bleeds, diarrhea, bowel ulcers and perforation. Reversible hair loss can result and wound healing may be delayed. Long-term effects on the gonads may cause periods to stop and inhibit sperm production. Most anti-cancer drugs can potentially cause mutations and birth defects, and coupled with the effects of the suppression of the immune system, may also cause cancer.

Long term exposure to high dust concentrations may cause changes in lung function i.e. pneumoconiosis; caused by particles less than 0.5 micron penetrating and remaining in the lung. Prime symptom is breathlessness; lung shadows show on X-ray. Sub-Chronic (Target Organ Effects)

Multi-cycle studies were conducted in rats and dogs. Each cycle consisted of five consecutive daily doses followed by a 23-day non-treatment period. Dosage levels ranged from 25 mg/m3 to a high dose of 10000 mg/m3. Target organs identified during these studies including the blood forming

systems, lymphoreticular, alimentary, male reproductive systems, and the mammary glands in females. The blood forming lymophoreticular and alimentary systems recovered after cessation of dosing. Oncogenicity studies have not been conducted. However the results of the six-day

cycle in rats can be used to evaluate the carcinogenic potential. In this study, mammary tumours occurred within a relatively short time span at all dose levels (25, 125, 200 mg/m2). Considering that temozolomide is a prodrug of an alkylating agent MTIC, its carcinogenic potential is not unexpected.

Teratogenicity (Birth Defects):

Testing fro reproductive toxicity was performed in dose ranging studies with rats and rabbits and a developmental study in rats. At the higher dose levels, the percentage of viable and live foetuses decreased. Resorption and post implantation losses were also increased in high dose groups in both species. Temozolomide, like other alkylating agents, has the potential to produce embryo

lethality and malformation in rats and rabbits.

Reproductive effects:

Contraindicated for use during pregnancy. Woman of child-bearing potential should be advised to avoid pregnancy while they are receiving treatment and for six months after discontinuation of therapy. It is not known whether the drug is excreted in human milk thus it should not be used by nursing women.

Testicular toxicity has been observed in multiple-cycle tests in dogs and rats. The reversibility of the testicular changes has not been assessed. Reduced absolute testis weights occurred in rats and dogs. These effects on the testes suggest a strong possibility for additional potential reproductive effects.

Human Experience:

Temozolomide has been well characterised and possesses an acceptable clinical safety profile as demonstrated in 1017 patients with malignant glioma, melanoma, or other advanced cancers. The majority of patients received Temodal, once daily for five days, repeating every 28 days up to the high dose of 200 mg/m2/day. The most common treatment related adverse effects include nausea (50%), vomiting (42%), headache (37%), fatigue (30%) and constipation (28%). Nausea and vomiting were usually mild to moderate in severity and were resolved spontaneously or were controlled readily with standard

Haematological toxicities were reported as adverse effects in all Phase II and the majority of all Phase I studies only if it lead to transfusion, hospitalisation, or discontinuation of treatment. Haematological adverse effects include thrombocytopenia (9%), anaemia (7%), neutropenia (4%) and leukopenia (2%).

Dose limiting toxicity (DLT) was haematologic, consisting of decreased platelets and neutrophils and to a lesser extent, haemoglobin.. The DLT was 1000 mg/m2 as a single dose.

Out of 400 glioma patients treated with Temodal, 11 discontinued treatment due to adverse events possibly or definitely related to treatment. Two deaths were also judged to related to the treatment.

In a melanoma treatment study with 151 patients, five discontinued treatment due to an adverse effect judged related or possibly related to treatment. Three patients died as a result of an adverse effect not clearly related to disease progression or

Medical Conditions Aggravated by Exposure.

Temodal is contraindicated in patients who have a history of hypersensitivity reactions to its components. Use cautiously in

patients who, before initiation f treatment, experience sever

vomiting or partial bowel obstruction. Contraindicated for use during pregnancy. There is no clinical experience with use of Temodal in children under the age of 3 years. Elderly patients (>70 years

of age) appear to be at increased risk of neutropenia and thrombocytopenia, compared to younger patients

Section 3 - COMPOSITION / INFORMATION ON INGREDIENTS

HAZARD RATINGS

Min Max Flammability: 1 Toxicity: 2 **Body Contact:** 2 Min/Nil=0 Low=1 Reactivity 3 Moderate=2 High=3 Chronic: 3 Extreme=4

CAS RN NAME % 85622-93-1 >98 temozolomide

Section 4 - FIRST AID MEASURES

SWALLOWED

- IF SWALLOWED, REFER FOR MEDICAL ATTENTION, WHERE POSSIBLE, WITHOUT DELAY.
- Where Medical attention is not immediately available or where the patient is more than 15 minutes from a hospital or unless instructed otherwise:
- For advice, contact a Poisons Information Center or a doctor.
- Urgent hospital treatment is likely to be needed.
- If conscious, give water to drink.
- INDUCE vomiting with fingers down the back of the throat, ONLY IF CONSCIOUS. Lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration.

NOTE: Wear a protective glove when inducing vomiting by mechanical means.

- In the mean time, qualified first-aid personnel should treat the patient following observation and employing supportive measures as indicated by the patient's condition.
- If the services of a medical officer or medical doctor are readily available, the patient should be placed in his/her care and a copy of the MSDS should be provided. Further action will be the responsibility of the medical specialist.
- If medical attention is not available on the worksite or surroundings send the patient to a hospital together with a copy of the MSDS.

EYE

- If this product comes in contact with the eyes:
- Wash out immediately with fresh running water.
- Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids.
- If pain persists or recurs seek medical attention.
- Removal of contact lenses after an eye injury should only be undertaken by skilled personnel.

SKIN

- If skin contact occurs:
- Immediately remove all contaminated clothing, including footwear
- Flush skin and hair with running water (and soap if available).
- Seek medical attention in event of irritation.

INHALED

- If fumes or combustion products are inhaled remove from contaminated area.
- Other measures are usually unnecessary.

NOTES TO PHYSICIAN

■ For employees potentially exposed to antineoplastic and/ or cytotoxic agents on a regular basis, a preplacement physical examination and history (noting risk factors) is recommended. Periodic follow-up examinations should also be undertaken and should be overseen by a physician familiar with the toxic effects of the substance and full details of the nature of work undertaken by the employee. Following administration of antineoplastics, control of nausea and vomiting may be attempted by giving phenothiazines such as perphenazine, prochlorperazine, promethazine or thiethylperazine before antineoplastic agents are administered. In bone-marrow depression, transfusion of blood or platelets reduces the risk of life-threatening hemorrhage. Granulocyte transfusions and injection of antibiotics may be necessary to combat infection in the neutropenic patient. Hyperuricemia is avoided by the addition of allopurinol to treatment schedules and measures such as alkalization of the urine and hydration may be adopted. MARTINDALE: The Extra Pharmacopoeia, 28th Edition.

Section 5 - FIRE FIGHTING MEASURES					
Vapour Pressure (mmHG):	Negligible				
Upper Explosive Limit (%):	Not Available				
Specific Gravity (water=1):	Not Available				

EXTINGUISHING MEDIA

- Foam.
- Dry chemical powder.
- · BCF (where regulations permit).
- Carbon dioxide.
- Water spray or fog Large fires only.

FIRE FIGHTING

.

- Alert Emergency Responders and tell them location and nature of hazard.
- · Wear breathing apparatus plus protective gloves.
- Prevent, by any means available, spillage from entering drains or water course.
- Use water delivered as a fine spray to control fire and cool adjacent area.
- DO NOT approach containers suspected to be hot.
- · Cool fire exposed containers with water spray from a protected location.
- If safe to do so, remove containers from path of fire.
- Equipment should be thoroughly decontaminated after use.

GENERAL FIRE HAZARDS/HAZARDOUS COMBUSTIBLE PRODUCTS

- · Combustible solid which burns but propagates flame with difficulty.
- Avoid generating dust, particularly clouds of dust in a confined or unventilated space as dusts may form an explosive
 mixture with air, and any source of ignition, i.e. flame or spark, will cause fire or explosion. Dust clouds generated by the
 fine grinding of the solid are a particular hazard; accumulations of fine dust may burn rapidly and fiercely if ignited.
- Dry dust can be charged electrostatically by turbulence, pneumatic transport, pouring, in exhaust ducts and during transport.
- Build-up of electrostatic charge may be prevented by bonding and grounding.
- Powder handling equipment such as dust collectors, dryers and mills may require additional protection measures such as explosion venting.

Combustion products include: carbon monoxide (CO), carbon dioxide (CO2), nitrogen oxides (NOx), other pyrolysis products typical of burning organic material.

May emit poisonous fumes.

May emit corrosive fumes.

Assess operations based upon available dust explosion information to determine the suitability of preventative or protective systems as precautionary measures against possible dust explosions. If prevention is not possible, consider protection by use of containment, venting or suppression of dust handling equipment. Where explosion venting is considered to be the most appropriate method of protection, vent areas should preferably be calculated based on Kst rather than an St value. If nitrogen purging is considered as the protective system, it must operate with an oxygen level below the limiting oxygen concentration. The system should include an oxygen monitoring and shut-down facility in the event of excessive oxygen being detected.

The maximum surface temperature of enclosures potentially exposed to this material should be based on values obtained by taking 2/3 of the minimum ignition temperature (MIE) of the dust cloud. The effect of dust layers should be reviewed.

An isolated (insulated) human body can readily produce electrostatic discharges in excess of 50 mJ, but have been recorded up to 100 mJ.

Dust Explosion Hazard Class 3

Dusts fall into one of three Kst* classes. Class 1 dusts; Kst 1-200 m3/sec; Class 2 dusts; 201-299 m3/sec. Class 3 dusts; Kst 300 or more. Most agricultural dusts (grains, flour etc.) are Class 1; pharmaceuticals and other speciality chemicals are typically Class 1 or 2; most unoxidized metallic dusts are Class 3. The higher the Kst, the more energetically the dust will burn and the greater is the explosion risk.* Kst - a normalized expression of the burning dust pressure rise rate over time.

FIRE INCOMPATIBILITY

■ Avoid contamination with oxidizing agents i.e. nitrates, oxidizing acids,chlorine bleaches, pool chlorine etc. as ignition may result.

PERSONAL PROTECTION

Glasses:

Gloves:

Respirator: Particulate

Section 6 - ACCIDENTAL RELEASE MEASURES

MINOR SPILLS

•

- · Clean up waste regularly and abnormal spills immediately.
- · Avoid breathing dust and contact with skin and eyes.
- Wear protective clothing, gloves, safety glasses and dust respirator.
- Use dry clean up procedures and avoid generating dust.
- Vacuum up or sweep up. NOTE: Vacuum cleaner must be fitted with an exhaust micro filter (HEPA type) (consider explosion-proof machines designed to be grounded during storage and use).
- · Dampen with water to prevent dusting before sweeping.
- · Place in suitable containers for disposal.

It is recommended that areas handling final finished product have cytotoxic spill kits available.

Spill kits should include:

- impermeable body covering,
- shoe covers,
- latex and utility latex gloves,
- goggles,
- approved HEPA respirator,
- · disposable dust pan and scoop,
- absorbent towels,

- · spill control pillows,
- · disposable sponges,
- · sharps container,
- · disposable garbage bag and
- · hazardous waste label

To avoid accidental exposure due to waste handling of cytotoxics:

- Place waste residue in a segregated sealed plastic container.
- Used syringes, needles and sharps should not be crushed, clipped, recapped, but placed directly into an approved sharps container.
- Dispose of any cleanup materials and waste residue according to all applicable laws and regulations e.g, secure chemical landfill disposal.

All personnel likely to involved in a antineoplastic (cytotoxic) spill must receive practical training in:

- the correct procedures for handling cytotoxic drugs or waste in order to prevent and minimize the risk of spills
- the location of the skill kit in the area
- the arrangements for medical treatment of any affected personnel
- the procedure for containment of the spill, and decontamination of personnel and the environment, including the different procedures for major and minor spills
- the procedure for waste disposal according to the nature and extent of the spill

MAJOR SPILLS

•

- · Clear area of personnel and move upwind.
- Alert Emergency Responders and tell them location and nature of hazard.
- · Wear full body protective clothing with breathing apparatus.
- Prevent, by all means available, spillage from entering drains or water courses.
- Consider evacuation (or protect in place).
- · No smoking, naked lights or ignition sources.
- · Increase ventilation.
- Stop leak if safe to do so.
- Water spray or fog may be used to disperse / absorb vapour.
- · Contain or absorb spill with sand, earth or vermiculite.
- · Collect recoverable product into labelled containers for recycling.
- Collect solid residues and seal in labelled drums for disposal.
- · Wash area and prevent runoff into drains.
- · After clean up operations, decontaminate and launder all protective clothing and equipment before storing and re-using.
- If contamination of drains or waterways occurs, advise emergency services.

ACUTE EXPOSURE GUIDELINE LEVELS (AEGL) (in ppm)

AEGL 1: The airborne concentration of a substance above which it is predicted that the general population, including susceptible individuals, could experience notable discomfort, irritation, or certain asymptomatic nonsensory effects. However, the effects are not disabling and are transient and reversible upon cessation of exposure.

AEGL 2: The airborne concentration of a substance above which it is predicted that the general population, including susceptible individuals, could experience irreversible or other serious, long-lasting adverse health effects or an impaired ability to escape

or an impaired ability to escape.

AEGL 3: The airborne concentration of a substance above which it is predicted that the general population, including susceptible individuals, could experience life-threatening health effects or death.

Section 7 - HANDLING AND STORAGE

PROCEDURE FOR HANDLING

- The National Institute of Health (USA) recommends that the preparation of injectable antineoplastic drugs should be performed in a Class II laminar flow biological safety cabinet and that personnel preparing drugs of this class should wear appropriate personal protective gear. Emphasise controls on containment.
- Avoid all personal contact, including inhalation.
- Wear protective clothing when risk of exposure occurs.
- · Use in a well-ventilated area.
- · Prevent concentration in hollows and sumps.
- DO NOT enter confined spaces until atmosphere has been checked.
- DO NOT allow material to contact humans, exposed food or food utensils.
- Avoid contact with incompatible materials.
- When handling, DO NOT eat, drink or smoke.
- Keep containers securely sealed when not in use.
- Avoid physical damage to containers.
- Always wash hands with soap and water after handling.
- · Work clothes should be laundered separately.
- Launder contaminated clothing before re-use.
- Use good occupational work practice.
- · Observe manufacturer's storing and handling recommendations.
- Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions are maintained.

RECOMMENDED STORAGE METHODS

- Glass container.
- Polyethylene or polypropylene container.
- Check all containers are clearly labelled and free from leaks.


STORAGE REQUIREMENTS

- Antineoplastics (cytotoxics):
- should be clearly identifiable to all personnel involved in their handling
- should be stored in impervious break-resistant containers
- should be stored in separate, clearly marked storage areas to minimize the risk of breakage, and to limit contamination in the event of leakage.

Spill kits should be available in storage areas.

- · Store in original containers.
- · Keep containers securely sealed.
- · Store in a cool, dry, well-ventilated area.
- Store away from incompatible materials and foodstuff containers.
- Protect containers against physical damage and check regularly for leaks.
- Observe manufacturer's storing and handling recommendations.

SAFE STORAGE WITH OTHER CLASSIFIED CHEMICALS

- X: Must not be stored together
- O: May be stored together with specific preventions
- +: May be stored together

Section 8 - EXPOSURE CONTROLS / PERSONAL PROTECTION

EXPOSURE CONTROLS

The following materials had no OELs on our records

• temozolomide: CAS:85622-93-1

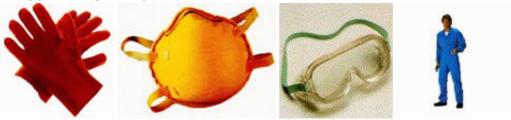
MATERIAL DATA

TEMOZOLOMIDE:

■ Sensory irritants are chemicals that produce temporary and undesirable side-effects on the eyes, nose or throat. Historically occupational exposure standards for these irritants have been based on observation of workers' responses to various airborne concentrations. Present day expectations require that nearly every individual should be protected against even minor sensory irritation and exposure standards are established using uncertainty factors or safety factors of 5 to 10 or more. On occasion animal no-observable-effect-levels (NOEL) are used to determine these limits where human results are unavailable. An additional approach, typically used by the TLV committee (USA) in determining respiratory standards for this group of chemicals, has been to assign ceiling values (TLV C) to rapidly acting irritants and to assign short-term exposure limits (TLV STELs) when the weight of evidence from irritation, bioaccumulation and other endpoints combine to warrant such a limit. In contrast the MAK Commission (Germany) uses a five-category system based on intensive odour, local irritation, and elimination half-life. However this system is being replaced to be consistent with the European Union (EU) Scientific Committee for Occupational Exposure Limits (SCOEL); this is more closely allied to that of the USA.

OSHA (USA) concluded that exposure to sensory irritants can:

- cause inflammation
- cause increased susceptibility to other irritants and infectious agents
- · lead to permanent injury or dysfunction
- · permit greater absorption of hazardous substances and
- acclimate the worker to the irritant warning properties of these substances thus increasing the risk of overexposure.


It is the goal of the ACGIH (and other Agencies) to recommend TLVs (or their equivalent) for all substances for which there is evidence of health effects at airborne concentrations encountered in the workplace.

At this time no TLV has been established, even though this material may produce adverse health effects (as evidenced in animal experiments or clinical experience). Airborne concentrations must be maintained as low as is practically possible and occupational exposure must be kept to a minimum.

NOTE: The ACGIH occupational exposure standard for Particles Not Otherwise Specified (P.N.O.S) does NOT apply.

Airborne particulate or vapor must be kept to levels as low as is practicably achievable given access to modern engineering controls and monitoring hardware. Biologically active compounds may produce idiosyncratic effects which are entirely unpredictable on the basis of literature searches and prior clinical experience (both recent and past). CEL TWA: 0.002 mg/m3 (cf Schering Plough OEG)

PERSONAL PROTECTION

Consult your EHS staff for recommendations

EYE

• Chemical protective goggles with full seal

- Shielded mask (gas-type)
- Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lens or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation - lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59]

- Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include: such as:
- frequency and duration of contact,
- chemical resistance of glove material,
- glove thickness and
- dexterity

Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739).

- When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374) is recommended.
- When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374) is recommended.
- · Contaminated gloves should be replaced.

Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.

- Rubber gloves (nitrile or low-protein, powder-free latex). Employees allergic to latex gloves should use nitrile gloves in preference.
- Double gloving should be considered.
- · PVC gloves.
- · Protective shoe covers.
- Head covering.

Experience indicates that the following polymers are suitable as glove materials for protection against undissolved, dry solids, where abrasive particles are not present.

- polychloroprene
- nitrile rubber
- · butyl rubber
- fluorocaoutchouc
- · polyvinyl chloride

Gloves should be examined for wear and/ or degradation constantly.

OTHER

- For quantities up to 500 grams a laboratory coat may be suitable.
- For quantities up to 1 kilogram a disposable laboratory coat or coverall of low permeability is recommended. Coveralls should be buttoned at collar and cuffs.
- · For quantities over 1 kilogram and manufacturing operations, wear disposable coverall of low permeability and disposable shoe covers.
- For manufacturing operations, air-supplied full body suits may be required for the provision of advanced respiratory protection.
- Eye wash unit.
- Ensure there is ready access to an emergency shower.
- · For Emergencies: Vinvl suit
- When handling antineoplastic materials, it is recommended that a disposal work-uniform (such as Tyvek or closed front surgical-type gown with knit cuffs) is worn.

RESPIRATOR

Protection Factor	Half-Face Respirator	Full-Face Respirator	Powered Air Respirator
10 x PEL	P1	-	PAPR-P1
	Air-line*	-	-
50 x PEL	Air-line**	P2	PAPR-P2
100 x PEL	-	P3	-
		Air-line*	-
100+ x PEL	-	Air-line**	PAPR-P3

* - Negative pressure demand ** - Continuous flow

Explanation of Respirator Codes:

Class 1 low to medium absorption capacity filters.

Class 2 medium absorption capacity filters.

Class 3 high absorption capacity filters.

PAPR Powered Air Purifying Respirator (positive pressure) cartridge.

Type A for use against certain organic gases and vapors.

Type AX for use against low boiling point organic compounds (less than 65°C).

Type B for use against certain inorganic gases and other acid gases and vapors.

Type E for use against sulfur dioxide and other acid gases and vapors.

Type K for use against ammonia and organic ammonia derivatives

Class P1 intended for use against mechanically generated particulates of sizes most commonly encountered in industry, e.g. asbestos, silica.

Class P2 intended for use against both mechanically and thermally generated particulates, e.g. metal fume.

Class P3 intended for use against all particulates containing highly toxic materials, e.g. beryllium.

The local concentration of material, quantity and conditions of use determine the type of personal protective equipment required.

Use appropriate NIOSH-certified respirator based on informed professional judgement. In conditions where no reasonable estimate of exposure can be made, assume the exposure is in a concentration IDLH and use NIOSH-certified full face pressure demand SCBA with a minimum service life of 30 minutes, or a combination full facepiece pressure demand SAR with auxiliary self-contained air supply. Respirators provided only for escape from IDLH atmospheres shall be NIOSH-certified for escape from the atmosphere in which they will be used.

ENGINEERING CONTROLS

- Employees exposed to confirmed human carcinogens should be authorized to do so by the employer, and work in a regulated area.
- Work should be undertaken in an isolated system such as a "glove-box". Employees should wash their hands and arms
 upon completion of the assigned task and before engaging in other activities not associated with the isolated system.
- Within regulated areas, the carcinogen should be stored in sealed containers, or enclosed in a closed system, including
 piping systems, with any sample ports or openings closed while the carcinogens are contained within.
- · Open-vessel systems are prohibited.
- Each operation should be provided with continuous local exhaust ventilation so that air movement is always from ordinary
 work areas to the operation.
- Exhaust air should not be discharged to regulated areas, non-regulated areas or the external environment unless
 decontaminated. Clean make-up air should be introduced in sufficient volume to maintain correct operation of the local
 exhaust system.
- For maintenance and decontamination activities, authorized employees entering the area should be provided with and
 required to wear clean, impervious garments, including gloves, boots and continuous-air supplied hood. Prior to removing
 protective garments the employee should undergo decontamination and be required to shower upon removal of the
 garments and hood.
- Except for outdoor systems, regulated areas should be maintained under negative pressure (with respect to non-regulated areas).
- · Local exhaust ventilation requires make-up air be supplied in equal volumes to replaced air.
- Laboratory hoods must be designed and maintained so as to draw air inward at an average linear face velocity of 150 feet/ min. with a minimum of 125 feet/ min. Design and construction of the fume hood requires that insertion of any portion of the employees body, other than hands and arms, be disallowed.

Section 9 - PHYSICAL AND CHEMICAL PROPERTIES

PHYSICAL PROPERTIES

State	Divided Solid	Molecular Weight	194.15
Melting Range (°F)	413.6 (decomposes)	Viscosity	Not Applicable
Boiling Range (°F)	Not Applicable	Solubility in water (g/L)	Partly Miscible
Flash Point (°F)	>199.4	pH (1% solution)	Not Applicable
Decomposition Temp (°F)	413.6	pH (as supplied)	Not Applicable
Autoignition Temp (°F)	Not Available	Vapour Pressure (mmHG)	Negligible
Upper Explosive Limit (%)	Not Available	Specific Gravity (water=1)	Not Available
Lower Explosive Limit (%)	Not Available	Relative Vapor Density (air=1)	Not Applicable
Volatile Component (%vol)	Negligible	Evaporation Rate	Not Applicable

APPEARANCE

White crystalline solid; does not mix well with water. Flammability Color Physical State Odor Miscibility with water - White Solid Crystalline Partly Miscible

Section 10 - CHEMICAL STABILITY

CONDITIONS CONTRIBUTING TO INSTABILITY

- · Presence of incompatible materials.
- Product is considered stable.
- Hazardous polymerization will not occur.

STORAGE INCOMPATIBILITY

•

Avoid strong acids, bases.

Avoid reaction with oxidizing agents.

For incompatible materials - refer to Section 7 - Handling and Storage.

Section 11 - TOXICOLOGICAL INFORMATION

temozolomide

TOXICITY AND IRRITATION

■ unless otherwise specified data extracted from RTECS - Register of Toxic Effects of Chemical Substances.

TOXICITY IRRITATION

Oral (Rat) LD50: 1937 mg/kg *

Intraperitoneal (Rat) LD50: 1414 mg/kg *

Oral (Mouse) (male:) LD50 891 mg/kg
Oral (Mouse) (female:) LD50 1072 mg/kg *

Tumourigenic agent, nausea, vomiting, leukopenia, thrombocytopenia, aplastic

anaemia, granulocytopenia, diarrhoea recorded

* Schering Plough MSDS

Section 12 - ECOLOGICAL INFORMATION

Refer to data for ingredients, which follows:

TEMOZOLOMIDE:

■ DO NOT discharge into sewer or waterways.

Ecotoxicity

Ingredient Persistence: Water/Soil Persistence: Air Bioaccumulation Mobility temozolomide HIGH LOW HIGH

Section 13 - DISPOSAL CONSIDERATIONS

Disposal Instructions

All waste must be handled in accordance with local, state and federal regulations.

Legislation addressing waste disposal requirements may differ by country, state and/ or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked.

A Hierarchy of Controls seems to be common - the user should investigate:

- Reduction
- Reuse
- Recycling
- · Disposal (if all else fails)

This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. Shelf life considerations should also be applied in making decisions of this type. Note that properties of a material may change in use, and recycling or reuse may not always be appropriate.

DO NOT allow wash water from cleaning equipment to enter drains. Collect all wash water for treatment before disposal.

- Antineoplastic (cytotoxic) wastes must be packed directly, ready for incineration, into color-coded, secure, labelled, leak-proof containers sufficiently robust to withstand handling without breaking, bursting or leaking.
- Containers of special design are available for particular needs (such as disposal of sharps) and should be used.
- · Once filled and closed, such containers must never be re-opened.
- Immediate containers must bear a nationally accepted symbol or device depicting cytotoxic substances and be labelled with the words: CYTOTOXIC WASTE - INCINERATE in a style of lettering approved by the national/ state authority.
- Where policies and procedures permit the merging of cytotoxic wastes with medical waste in an outer container used for medical waste, cytotoxic waste must first be placed in identifiable color-coded/ labelled cytotoxic containers prior to merging.
- Management procedures must ensure that merged medical and cytotoxic waste is subjected to the incineration requirements appropriate for the total destruction of the cytotoxic waste.

WASTE STORAGE OF CYTOTOXIC WASTES For the storage of cytotoxic waste, segregated or merged with medical waste, provide:

- special storage areas with adequate lighting.
- waste security and restriction of access to authorized persons.
- storage areas designed to facilitate easy routine cleaning and maintenance to hygienic standards, or post-spill decontamination.
- storage of cytotoxic waste in standard, identifying bins or other appropriate containers.

COLLECTION OF CYTOTOXIC WASTES

- Procedures for the collection of cytotoxic wastes, which are compatible with existing operational needs, and which protect
 workers, other people and the environment, must be developed.
- Waste must be removed from the site by contractors whose workers have been instructed in the protective methods to be
 used against the hazards involved, and who comply with the safe work practices established by internal and/or national/
 state policies. Contractors must instruct, train and direct their personnel in the safe and legal handling of cytotoxic wastes.
 Contractor's personnel should observe the operating procedures of the waste-generator.
- Transport of cytotoxic wastes, through the community, must comply with the appropriate national/ state codes.

DESTRUCTION OF CYTOTOXIC WASTES

- Destruction of cytotoxic wastes should be carried out in multi-chambered incinerators, licenced for this purpose, operating at 1100 deg. C. or more, with a residence time of at least 1 second.
- · Operators must be trained in handling procedures and hazards involved with handling the waste.
- Waste which arrives at the incinerator inappropriately packaged should NOT be returned to the waste generator. An authorized representative of the waste generator must attend the incinerator site to rectify the situation.

Section 14 - TRANSPORTATION INFORMATION

NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS: DOT, IATA, IMDG

Section 15 - REGULATORY INFORMATION

No data for temozolomide (CAS: , 85622-93-1)

Section 16 - OTHER INFORMATION

Germany Hazard classification and labelling of medicines with antineoplastic effects (ATC Code L01

and L02)

INN	CAS	Danger	CMR effects	CMR effects	Other
			Cat 1&2	Cat 3	
Temozolomid	85622- 93- 1	Т	R 45 R 46 R 60		
			R 61		

Reasonable care has been taken in the preparation of this information, but the author makes no warranty of merchantability or any other warranty, expressed or implied, with respect to this information. The author makes no representations and assumes no liability for any direct, incidental or consequential damages resulting from its use. For additional technical information please call our toxicology department on +800 CHEMCALL.

- Classification of the mixture and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references.

 A list of reference resources used to assist the committee may be found at:

 www.chemwatch.net/references.
- The (M)SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

This document is copyright. Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH. TEL (+61 3) 9572 4700.

Issue Date: Jul-4-2007 Print Date:Apr-21-2010