Benzoic acid

sc-203317

The Power to Oscotion

Hazard Alert Code Key: EXTREME HIGH MODERATE LOW

Section 1 - CHEMICAL PRODUCT AND COMPANY IDENTIFICATION

PRODUCT NAME

Benzoic acid

STATEMENT OF HAZARDOUS NATURE

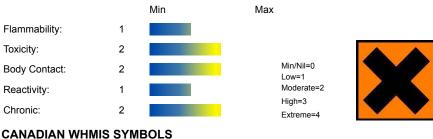
CONSIDERED A HAZARDOUS SUBSTANCE ACCORDING TO OSHA 29 CFR 1910.1200.

NFPA

SUPPLIER

Santa Cruz Biotechnology, Inc. 2145 Delaware Avenue Santa Cruz, California 95060 800.457.3801 or 831.457.3800

EMERGENCY ChemWatch


Within the US & Canada: 877–715–9305 Outside the US & Canada: +800 2436 2255 (1–800-CHEMCALL) or call +613 9573 3112

SYNONYMS

C7-H6-O2, C6H5COOH, "benzenecarboxylic acid", "benzeneformic acid", "benzenemethanoic acid", benzoate, carboxybenzene, "dracylic acid", "phenyl carboxylic acid", "phenyl carboxylic acid", "Retarder BA", Retardex, Tenn-Plas, "Salvo liquid", "Salvo powder", APS, RDEH06033047, RDEH06033045, TECH00005177, UL00000823, "AR 00000926", BP000005116, 03100188, BEACID20, 012998

Section 2 - HAZARDS IDENTIFICATION

CHEMWATCH HAZARD RATINGS

EMERGENCY OVERVIEW

RISK

Harmful if swallowed. Irritating to eyes, respiratory system and skin.

POTENTIAL HEALTH EFFECTS

ACUTE HEALTH EFFECTS

SWALLOWED

■ Accidental ingestion of the material may be harmful; animal experiments indicate that ingestion of less than 150 gram may be fatal or may produce serious damage to the health of the individual.

EYE

■ There is evidence that material may produce eye irritation in some persons and produce eye damage 24 hours or more after instillation. Severe inflammation may be expected with pain.

SKIN

■ The material may cause moderate inflammation of the skin either following direct contact or after a delay of some time.

Repeated exposure can cause contact dermatitis which is characterized by redness, swelling and blistering.

- Molten material is capable of causing burns.
- Open cuts, abraded or irritated skin should not be exposed to this material.
- Entry into the blood-stream, through, for example, cuts, abrasions or lesions, may produce systemic injury with harmful effects.

Examine the skin prior to the use of the material and ensure that any external damage is suitably protected.

INHALED

■ The material can cause respiratory irritation in some persons.

The body's response to such irritation can cause further lung damage.

- Processing for an overly long time or processing at overly high temperatures may cause generation and release of highly irritating vapors, which irritate eyes, nose, throat, causing red itching eyes, coughing, sore throat.
- Persons with impaired respiratory function, airway diseases and conditions such as emphysema or chronic bronchitis, may incur further disability if excessive concentrations of particulate are inhaled.
- Usually handled as molten liquid which requires worker thermal protection and increases hazard of vapor exposure. CAUTION: Vapors may be irritating.

CHRONIC HEALTH EFFECTS

■ Long-term exposure to respiratory irritants may result in disease of the airways involving difficult breathing and related systemic problems. Limited evidence suggests that repeated or long-term occupational exposure may produce cumulative health effects involving organs or biochemical systems.

There is some evidence that inhaling this product is more likely to cause a sensitization reaction in some persons compared to the general population.

There is limited evidence that, skin contact with this product is more likely to cause a sensitization reaction in some persons compared to the general population.

Allergic reactions to benzoic acid have been reported. Of 100 patients with asthma undergoing provocation tests with benzoic acid, 47 showed positive reactions. In another study, of 75 patients with recurrent urticaria (skin eruptions) and angio-oedema (a deep dermal condition characterised by large wheals) of more than 4 months duration, 44 were found to be sensitive to sodium benzoate or p-hydroxybenzoic acid (paraben), alone or in conjunction with aspirin or azo- dyes, or both. In a further work there was no significant objective or subjective skin response to two 500-mg daily doses of benzoic acid or lactic acid in a double blind study of 150 dermatological patients.

Long term exposure to high dust concentrations may cause changes in lung function i.e. pneumoconiosis; caused by particles less than 0.5 micron penetrating and remaining in the lung.

Sensitization may give severe responses to very low levels of exposure, i.e. hypersensitivity.

Section 3 - COMPOSITION / INFORMATION ON INGREDIENTS

 NAME
 CAS RN
 %

 benzoic acid
 65-85-0
 > 99.5

Section 4 - FIRST AID MEASURES

SWALLOWED

· IF SWALLOWED, REFER FOR MEDICAL ATTENTION, WHERE POSSIBLE, WITHOUT DELAY. · Where Medical attention is not immediately available or where the patient is more than 15 minutes from a hospital or unless instructed otherwise:

EYE

■ If this product comes in contact with the eyes: · Wash out immediately with fresh running water. · Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids. For THERMAL burns: · Do

NOT remove contact lens · Lay victim down, on stretcher if available and pad BOTH eyes, make sure dressing does not press on the injured eye by placing thick pads under dressing, above and below the eye. · Seek urgent medical assistance, or transport to hospital.

SKIN

■ If skin contact occurs: · Immediately remove all contaminated clothing, including footwear · Flush skin and hair with running water (and soap if available). In case of burns: · Immediately apply cold water to burn either by immersion or wrapping with saturated clean cloth. · DO NOT remove or cut away clothing over burnt areas. DO NOT pull away clothing which has adhered to the skin as this can cause further injury. · DO NOT break blister or remove solidified material. · Quickly cover wound with dressing or clean cloth to help prevent infection and to ease pain. · For large burns, sheets, towels or pillow slips are ideal; leave holes for eyes, nose and mouth. · DO NOT apply ointments, oils, butter, etc. to a burn under any circumstances. · Water may be given in small quantities if the person is conscious. · Alcohol is not to be given under any circumstances. · Reassure. · Treat for shock by keeping the person warm and in a lying position. · Seek medical aid and advise medical personnel in advance of the cause and extent of the injury and the estimated time of arrival of the patient.

INHALED

· If fumes or combustion products are inhaled remove from contaminated area. · Lay patient down. Keep warm and rested.

NOTES TO PHYSICIAN

■ for poisons (where specific treatment regime is absent):

-----BASIC TREATMENT

- · Establish a patent airway with suction where necessary.
- · Watch for signs of respiratory insufficiency and assist ventilation as necessary.

Treat symptomatically.

	Section 5 - FIRE FIGHTING MEASURES
Vapor Pressure (mmHg):	0.975 @ 96 C
Upper Explosive Limit (%):	Not available.
Specific Gravity (water=1):	1.27 @ 15 C
Lower Explosive Limit (%):	Not available.

EXTINGUISHING MEDIA

- · Do NOT direct a solid stream of water or foam into burning molten material; this may cause spattering and spread the fire.
- · Foam.
- · Dry chemical powder.

FIRE FIGHTING

- \cdot Alert Emergency Responders and tell them location and nature of hazard.
- · Wear breathing apparatus plus protective gloves.

GENERAL FIRE HAZARDS/HAZARDOUS COMBUSTIBLE PRODUCTS

- · Combustible solid which burns but propagates flame with difficulty.
- Avoid generating dust, particularly clouds of dust in a confined or unventilated space as dusts may form an explosive mixture with air, and any source of ignition, i.e. flame or spark, will cause fire or explosion. Dust clouds generated by the fine grinding of the solid are a particular hazard; accumulations of fine dust may burn rapidly and fiercely if ignited.

Combustion products include: carbon monoxide (CO), carbon dioxide (CO2), other pyrolysis products typical of burning organic material. May emit poisonous fumes.

May emit corrosive fumes.

CARE: Contamination of heated / molten liquid with water may cause violent steam explosion, with scattering of hot contents.

Vapours from hot or molten benzoic acid may form explosive mixtures with air.

FIRE INCOMPATIBILITY

■ Avoid contamination with oxidizing agents i.e. nitrates, oxidizing acids,chlorine bleaches, pool chlorine etc. as ignition may result.

PERSONAL PROTECTION

Glasses:

Chemical goggles.

Gloves:

Respirator:

Particulate

Section 6 - ACCIDENTAL RELEASE MEASURES

MINOR SPILLS

- · Remove all ignition sources.
- · Clean up all spills immediately.
- · Avoid contact with skin and eyes.
- · Control personal contact by using protective equipment.
- · Use dry clean up procedures and avoid generating dust.
- Place in a suitable, labelled container for waste disposal.

MAJOR SPILLS

- Moderate hazard.
- · CAUTION: Advise personnel in area.
- · Alert Emergency Responders and tell them location and nature of hazard.

Section 7 - HANDLING AND STORAGE

PROCEDURE FOR HANDLING

- · The greatest potential for injury caused by molten materials occurs during purging of machinery (moulders, extruders etc.)
- It is essential that workers in the immediate area of the machinery wear eye and skin protection (such as full face, safety glasses, heat resistant gloves, overalls and safety boots) as protection from thermal burns.
- · Avoid all personal contact, including inhalation.
- · Wear protective clothing when risk of exposure occurs.

Empty containers may contain residual dust which has the potential to accumulate following settling. Such dusts may explode in the presence of an appropriate ignition source.

- Do NOT cut, drill, grind or weld such containers.
- · In addition ensure such activity is not performed near full, partially empty or empty containers without appropriate workplace safety authorisation or permit.

RECOMMENDED STORAGE METHODS

- Glass container.
- · Polyethylene or polypropylene container.
- · Check all containers are clearly labelled and free from leaks.

STORAGE REQUIREMENTS

- · Store in original containers.
- · Keep containers securely sealed.

Section 8 - EXPOSURE CONTROLS / PERSONAL PROTECTION

EXPOSURE CONTROLS

Source	Material	TWA ppm	TWA mg/m³	STEL ppm	STEL mg/m³	Peak ppm	Peak mg/m³	TWA F/CC	Notes
US - California Permissible Exposure Limits for Chemical Contaminants	benzoic acid (Particulates not otherwise regulated Respirable fraction)		5						(n)
US - Tennessee Occupational Exposure Limits - Limits For Air Contaminants	benzoic acid (Particulates not otherwise regulated Respirable fraction)		5						
US - Wyoming Toxic and Hazardous Substances Table Z1 Limits for Air Contaminants	benzoic acid (Particulates not otherwise regulated (PNOR)(f)- Respirable fraction)		5						
US - Michigan Exposure Limits for Air Contaminants	benzoic acid (Particulates not otherwise regulated, Respirable dust)		5						
Canada - Prince Edward Island Occupational Exposure Limits	benzoic acid (Particles (Insoluble or Poorly Soluble) [NOS] Inhalable particles)		10						See Appendix B current TLV/BEI Book

ENDOELTABLE

PERSONAL PROTECTION

RESPIRATOR

Particulate

Consult your EHS staff for recommendations

EYE

- Safety glasses with side shields.
- · Chemical goggles.

HANDS/FEET

■ NOTE: The material may produce skin sensitization in predisposed individuals. Care must be taken, when removing gloves and other protective equipment, to avoid all possible skin contact.

Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include: such as:

- · frequency and duration of contact.
- · chemical resistance of glove material,
- · glove thickness and
- · dexterity

Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739).

- · When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374) is recommended.
- · When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374) is recommended.
- · Contaminated gloves should be replaced.

Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.

- · When handling hot materials wear heat resistant, elbow length gloves.
- · Rubber gloves are not recommended when handling hot objects, materials.
- · Protective gloves eg. Leather gloves or gloves with Leather facing.

Experience indicates that the following polymers are suitable as glove materials for protection against undissolved, dry solids, where abrasive particles are not present.

- · polychloroprene
- · nitrile rubber
- · butyl rubber
- $\cdot \ fluorocaout chouc$
- · polyvinyl chloride

Gloves should be examined for wear and/ or degradation constantly.

OTHER

· When handling hot or molten liquids, wear trousers or overalls outside of boots, to avoid spills entering boots.

Usually handled as molten liquid which requires worker thermal protection and increases hazard of vapor exposure.CAUTION: Vapors may be irritating.

- · Overalls.
- · P.V.C. apron.
- Barrier cream.
- · Skin cleansing cream.
- · Eye wash unit.

ENGINEERING CONTROLS

■ For molten materials:

Provide mechanical ventilation; in general such ventilation should be provided at compounding/ converting areas and at fabricating/ filling work stations where the material is heated. Local exhaust ventilation should be used over and in the vicinity of machinery involved in handling the molten material.

Keep dry!!

Processing temperatures may be well above boiling point of water, so wet or damp material may cause a serious steam explosion if used in unvented equipment.

General exhaust is adequate under normal operating conditions. Local exhaust ventilation may be required in special circumstances.

Section 9 - PHYSICAL AND CHEMICAL PROPERTIES

PHYSICAL PROPERTIES

Solid.

Does not mix with water.

Sinks in water.

State	Divided solid	Molecular Weight	122.12
Melting Range (°F)	251.834 partially	Viscosity	Not Applicable

Boiling Range (°F)	480.434	Solubility in water (g/L)	Immiscible
Flash Point (°F)	249.8- 267.8	pH (1% solution)	2.8 (saturated)
Decomposition Temp (°F)	Not available.	pH (as supplied)	Not applicable
Autoignition Temp (°F)	1065.2	Vapor Pressure (mmHg)	0.975 @ 96 C
Upper Explosive Limit (%)	Not available.	Specific Gravity (water=1)	1.27 @ 15 C
Lower Explosive Limit (%)	Not available.	Relative Vapor Density (air=1)	4.2
Volatile Component (%vol)	Negligible	Evaporation Rate	Not available
benzoic acid			
	log Kow (Prager 1995):		1.87

APPEARANCE

■ Use may require material be molten. Molten or heated material may be compounded, moulded or extruded. Colourless to white solid (crystals, powder, platelets, scale) with aromatic-like odour. Soluble in alcohol, ether, acetone, benzene, chloroform. Partially soluble in water. Solubility in water @ 20 C: 0.29 g/100 cc.

log Kow 1.87

Material Value

Section 10 - CHEMICAL STABILITY

CONDITIONS CONTRIBUTING TO INSTABILITY

- · Presence of incompatible materials.
- Product is considered stable.

STORAGE INCOMPATIBILITY

■ Avoid reaction with oxidizing agents, bases and strong reducing agents.

For incompatible materials - refer to Section 7 - Handling and Storage.

Section 11 - TOXICOLOGICAL INFORMATION

benzoic acid

TOXICITY AND IRRITATION

BENZOIC ACID:

■ unless otherwise specified data extracted from RTECS - Register of Toxic Effects of Chemical Substances.

TOXICITY	IRRITATION
Oral (man) LDLo: 500 mg/kg	Skin (human): 22 mg/3d - Moderate
Oral (rat) LD50: 1700 mg/kg	Skin (rabbit): 500 mg/24h - Mild

Dermal (human) TDLo: 6 mg/kg Eye (rabbit): 100 mg - SEVERE

■ Asthma-like symptoms may continue for months or even years after exposure to the material ceases. This may be due to a non-allergenic condition known as reactive airways dysfunction syndrome (RADS) which can occur following exposure to high levels of highly irritating compound. Key criteria for the diagnosis of RADS include the absence of preceding respiratory disease, in a non-atopic individual, with abrupt onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the irritant. A reversible airflow pattern, on spirometry, with the presence of moderate to severe bronchial hyperreactivity on methacholine challenge testing and the lack of minimal lymphocytic inflammation, without eosinophilia, have also been included in the criteria for diagnosis of RADS. RADS (or asthma) following an irritating inhalation is an infrequent disorder with rates related to the concentration of and duration of exposure to the irritating substance. Industrial bronchitis, on the other hand, is a disorder that occurs as result of exposure due to high concentrations of irritating substance (often particulate in nature) and is completely reversible after exposure ceases. The disorder is characterised by dyspnea, cough and mucus production.

The material may produce severe irritation to the eye causing pronounced inflammation. Repeated or prolonged exposure to irritants may produce conjunctivitis.

The material may cause skin irritation after prolonged or repeated exposure and may produce on contact skin redness, swelling, the production of vesicles, scaling and thickening of the skin.

For benzoates:

Acute toxicity: Benzyl alcohol, benzoic acid and its sodium and potassium salt can be considered as a single category regarding human health, as they are all rapidly metabolised and excreted via a common pathway within 24 hrs. Systemic toxic effects of similar nature (e.g. liver, kidney) were observed. However with benzoic acid and its salts toxic effects are seen at higher doses than with benzyl alcohol.

The compounds exhibit low acute toxicity as for the oral and dermal route. The LD50 values are > 2000 mg/kg bw except for benzyl alcohol which needs to be considered as harmful by the oral route in view of an oral LD50 of 1610 mg/kg bw. The 4 hrs inhalation exposure of benzyl alcohol or benzoic acid at 4 and 12 mg/l as aerosol/dust respectively gave no mortality, showing low acute toxicity by inhalation for these compounds.

Benzoic acid and benzyl alcohol are slightly irritating to the skin, while sodium benzoate was not skin irritating. No data are available for potassium benzoate but it is also expected not to be skin irritating. Benzoic acid and benzyl alcohol are irritating to the eye and sodium benzoate was only slightly irritating to the eye. No data are available for potassium benzoate but it is expected also to be only slightly irritating to the eye.

Sensitisation: The available studies for benzoic acid gave no indication for a sensitising effect in animals, however occasionally very low positive reactions were recorded with humans (dermatological patients) in patch tests. The same occurs for sodium benzoate. It has been suggested that the very low positive reactions are non-immunologic contact urticaria. Benzyl alcohol gave positive and negative results in animals. Benzyl alcohol also demonstrated a maximum incidence of sensitization of only 1% in human patch testing. Over several decades no sensitization with these compounds has been seen among workers.

Repeat dose toxicity: For benzoic acid repeated dose oral toxicity studies give a NOAEL of 800 mg/kg/day. For the salts values > 1000 mg/kg/day are obtained. At higher doses increased mortality, reduced weight gain, liver and kidney effects were observed.

For benzyl alcohol the long-term studies indicate a NOAEL > 400 mg/kg bw/d for rats and > 200 mg/kg bw/d for mice. At higher doses effects on bodyweights, lesions in the brains, thymus, skeletal muscle and kidney were observed. It should be taken into account that administration in these studies was by gavage route, at which saturation of metabolic pathways is likely to occur.

Mutagenicity: All chemicals showed no mutagenic activity in in vitro Ames tests. Various results were obtained with other in vitro genotoxicity assays. Sodium benzoate and benzyl alcohol showed no genotoxicity in vivo. While some mixed and/or equivocal in vitro chromosomal/chromatid responses have been observed, no genotoxicity was observed in the in vivo cytogenetic, micronucleus, or other assays. The weight of the evidence of the in vitro and in vivo genotoxicity data indicates that these chemicals are not mutagenic or clastogenic. They also are not carcinogenic in long-term carcinogenicity studies.

In a 4-generation study with benzoic acid no effects on reproduction were seen (NOAEL: 750 mg/kg). No compound related effects on reproductive organs (gross and histopathology examination) could be found in the (sub) chronic studies in rats and mice with benzyl acetate, benzyl alcohol, benzaldehyde, sodium benzoate and supports a non-reprotoxic potential of these compounds. In addition, data from reprotoxicity studies on benzyl acetate (NOAEL >2000 mg/kg bw/d; rats and mice) and benzaldehyde (tested only up to 5 mg/kg bw; rats) support the non-reprotoxicity of benzyl alcohol and benzoic acid and its salts.

Developmental toxicity: In rats for sodium benzoate dosed via food during the entire gestation developmental effects occurred only in the presence of marked maternal toxicity (reduced food intake and decreased body weight) (NOAEL = 1400 mg/kg bw). For hamster (NOEL: 300 mg/kg bw), rabbit (NOEL: 250 mg/kg bw) and mice (CD-1 mice, NOEL: 175 mg/kg bw) no higher doses (all by gavage) were tested and no maternal toxicity was observed. For benzyl alcohol: NOAEL= 550 mg/kg bw (gavage; CD-1 mice). LOAEL = 750 mg/kg bw (gavage mice). In this study maternal toxicity was observed e.g. increased mortality, reduced body weight and clinical toxicology. Benzyl acetate: NOEL = 500 mg/kg bw (gavage rats). No maternal toxicity was observed.

Section 12 - ECOLOGICAL INFORMATION

No data

Ecotoxicity

Ingredient Persistence: Water/Soil Persistence: Air Bioaccumulation Mobility benzoic acid LOW LOW HIGH

Section 13 - DISPOSAL CONSIDERATIONS

Disposal Instructions

All waste must be handled in accordance with local, state and federal regulations.

Puncture containers to prevent re-use and bury at an authorized landfill.

Legislation addressing waste disposal requirements may differ by country, state and/ or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked.

A Hierarchy of Controls seems to be common - the user should investigate:

- Reduction
- · Reuse
- · Recycling
- · Disposal (if all else fails)

This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. Shelf life considerations should also be applied in making decisions of this type. Note that properties of a material may change in use, and recycling or reuse may not always be appropriate.

DO NOT allow wash water from cleaning equipment to enter drains. Collect all wash water for treatment before disposal.

- · Recycle wherever possible.
- · Consult manufacturer for recycling options or consult Waste Management Authority for disposal if no suitable treatment or disposal facility can be identified.

Section 14 - TRANSPORTATION INFORMATION

NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS: DOT, IATA, IMDG

Section 15 - REGULATORY INFORMATION

benzoic acid (CAS: 65-85-0) is found on the following regulatory lists;

"Canada Domestic Substances List (DSL)","Canada Ingredient Disclosure List (SOR/88-64)","Canada Toxicological Index Service - Workplace Hazardous Materials Information System - WHMIS (English)","International Council of Chemical Associations (ICCA) - High Production Volume List","International Fragrance Association (IFRA) Survey: Transparency List","OECD Representative List of High Production Volume (HPV) Chemicals","US - California Occupational Safety and Health Regulations (CAL/OSHA) - Hazardous Substances List","US - Massachusetts Oil & Hazardous Material List","US - New Jersey Right to Know Hazardous Substances","US - Pennsylvania - Hazardous Substance List","US Cosmetic Ingredient Review (CIR) Cosmetic ingredients found safe, with qualifications","US Cosmetic Ingredient Review (CIR) Cosmetic ingredients with insufficient data to support safety","US CWA (Clean Water Act) - List of Hazardous

Substances","US CWA (Clean Water Act) - Reportable Quantities of Designated Hazardous Substances","US Department of Transportation (DOT) List of Hazardous Substances and Reportable Quantities - Hazardous Substances Other Than Radionuclides","US DOE Temporary Emergency Exposure Limits (TEELs)","US EPA Carcinogens Listing","US EPA High Production Volume Program Chemical List","US Food Additive Database","US List of Lists - Consolidated List of Chemicals Subject to EPCRA, CERCLA and Section 112(r) of the Clean Air Act","US NFPA 499 Combustible Dusts","US Toxic Substances Control Act (TSCA) - Inventory"

Section 16 - OTHER INFORMATION

ND

Substance CAS Suggested codes benzoic acid 65-85-0

Reasonable care has been taken in the preparation of this information, but the author makes no warranty of merchantability or any other warranty, expressed or implied, with respect to this information. The author makes no representations and assumes no liability for any direct, incidental or consequential damages resulting from its use. For additional technical information please call our toxicology department on +800 CHEMCALL.

- Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references.

 A list of reference resources used to assist the committee may be found at:

 www.chemwatch.net/references.
- The (M)SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

This document is copyright. Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH. TEL (+61 3) 9572 4700.

Issue Date: Nov-25-2008 Print Date:Feb-12-2011