
Stearic Acid

SUPPLIER

Company: Santa Cruz Biotechnology, Inc. Address: 2145 Delaware Ave Santa Cruz, CA 95060 Telephone: 800.457.3801 or 831.457.3800 Emergency Tel: CHEMWATCH: From within the US and Canada: 877-715-9305 Emergency Tel: From outside the US and Canada: +800 2436 2255 (1-800-CHEMCALL) or call +613 9573 3112

PRODUCT USE

For suppositories, coating enteric pills, ointments and for coating bitter remedies. In the manufacture of stearates of aluminium, zinc and other metals; stearin soap for opodeldoc; candles; phonograph records; insulators and modelling compounds. Used in chemicals, lubricants, soaps, pharmaceuticals, cosmetics, rubber compounds, polishes, coatings, food processing and ointments.

SYNONYMS

C18-H36-O2, "1-heptadecanecarboxylic acid", "1-heptadecanecarboxylic acid", "octadecanoic acid", "stearophanic acid", "Century 1240", "Dar Chem 14", "Emersol 120/132/150", "Formula 300", "Glycon DP/TP/S-70/S-80/S-90", "Groco 54/55/55L/58/59", "Hydrofol acid-1655/1855/1895", "Hy-Phi 1199/1205/1303/1401", "Hystrene 80/4516/5016/7018/9718", "Industrene 5016/8718/9018", "Kam 1000/2000/3000", "Neo-fat 18/18-5/18-53/18-54/18-55/18-59/18-61", "Pearl stearic", "Tegostrearic 254/255/272", "Stearine G Flake", "Stearex beads", "fatty acid"

Section 2 - HAZARDS IDENTIFICATION

CANADIAN WHMIS SYMBOLS

EMERGENCY OVERVIEW RISK Irritating to eyes, respiratory system and skin.

POTENTIAL HEALTH EFFECTS

ACUTE HEALTH EFFECTS

SWALLOWED

Although ingestion is not thought to produce harmful effects, the material may still be damaging to the health of the individual following ingestion, especially where pre-existing organ (e.g. liver, kidney) damage is evident. Present definitions of harmful or toxic substances are generally based on doses producing mortality (death) rather than those producing morbidity (disease, ill-health). Gastrointestinal tract discomfort may produce nausea and vomiting. In an occupational setting however, ingestion of insignificant quantities is not thought to be cause for concern.

Weanling mice receiving diets containing 5-50% stearyl monoglyceride for three weeks, showed depression of weight gain above 10%. Mortalities occurred with the 50% diet. In another study, rats fed 0.3 % stearic acid as part of a high fat diet for 6

weeks, or 6% for 9 weeks showed decreased blood clotting times and hyperlipaemia. No significant pathology was identified in rats fed at 0.3% for about 30 weeks; anorexia, increased mortality and a greater incidence of pulmonary infection were seen. **EYE**

This material can cause eye irritation and damage in some persons.

SKIN

The material may cause moderate inflammation of the skin either following direct contact or after a delay of some time.
 Repeated exposure can cause contact dermatitis which is characterized by redness, swelling and blistering.
 Skin contact is not thought to have harmful health effects, however the material may still produce health damage following

• Skin contact is not thought to have harmful health effects, however the material may still produce health damage following entry through wounds, lesions or abrasions.

• Open cuts, abraded or irritated skin should not be exposed to this material.

• Entry into the blood-stream, through, for example, cuts, abrasions or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected.

INHALED

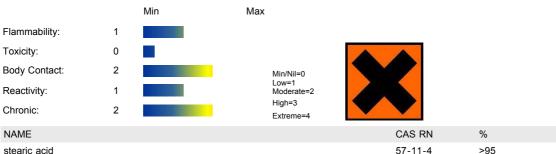
• The material can cause respiratory irritation in some persons. The body's response to such irritation can cause further lung damage.

Persons with impaired respiratory function, airway diseases and conditions such as emphysema or chronic bronchitis, may incur further disability if excessive concentrations of particulate are inhaled.

■ Fine mists generated from plant/ vegetable (or more rarely from animal) oils may be hazardous. Extreme heating for prolonged periods, at high temperatures, may generate breakdown products which include acrolein and acrolein-like substances.

■ Usually handled as molten liquid which requires worker thermal protection and increases hazard of vapor exposure.CAUTION: Vapors may be irritating.

CHRONIC HEALTH EFFECTS


• Long-term exposure to respiratory irritants may result in disease of the airways involving difficult breathing and related systemic problems.

Limited evidence suggests that repeated or long-term occupational exposure may produce cumulative health effects involving organs or biochemical systems.

Long term exposure to high dust concentrations may cause changes in lung function i.e. pneumoconiosis; caused by particles less than 0.5 micron penetrating and remaining in the lung. Prime symptom is breathlessness; lung shadows show on X-ray.

Section 3 - COMPOSITION / INFORMATION ON INGREDIENTS

HAZARD RATINGS

Section 4 - FIRST AID MEASURES

SWALLOWED

Immediately give a glass of water.

• First aid is not generally required. If in doubt, contact a Poisons Information Center or a doctor.

EYE

- If this product comes in contact with the eyes:
- · Wash out immediately with fresh running water.
- Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids.
- If pain persists or recurs seek medical attention.
- Removal of contact lenses after an eye injury should only be undertaken by skilled personnel.

SKIN

- If skin contact occurs:
- · Immediately remove all contaminated clothing, including footwear
- Flush skin and hair with running water (and soap if available).
- Seek medical attention in event of irritation.
- In case of burns:
- Immediately apply cold water to burn either by immersion or wrapping with saturated clean cloth.
- DO NOT remove or cut away clothing over burnt areas. DO NOT pull away clothing which has adhered to the skin as this
 can cause further injury.
- DO NOT break blister or remove solidified material.
- Quickly cover wound with dressing or clean cloth to help prevent infection and to ease pain.
- · For large burns, sheets, towels or pillow slips are ideal; leave holes for eyes, nose and mouth.
- DO NOT apply ointments, oils, butter, etc. to a burn under any circumstances.
- Water may be given in small quantities if the person is conscious.
- Alcohol is not to be given under any circumstances.
- Reassure.
- Treat for shock by keeping the person warm and in a lying position.
- Seek medical aid and advise medical personnel in advance of the cause and extent of the injury and the estimated time of arrival of the patient.

INHALED

- If fumes or combustion products are inhaled remove from contaminated area.
- Lay patient down. Keep warm and rested.
- Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid

procedures.

- Apply artificial respiration if not breathing, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained. Perform CPR if necessary.
- Transport to hospital, or doctor, without delay.

NOTES TO PHYSICIAN

Treat symptomatically.

Section 5 - FIRE FIGHTING MEASURES

Vapor Pressure (mmHg):	0.998 @ 180C
Upper Explosive Limit (%):	Not available.
Specific Gravity (water=1):	0.85
Lower Explosive Limit (%):	Not available.

EXTINGUISHING MEDIA

- Do NOT direct a solid stream of water or foam into burning molten material; this may cause spattering and spread the fire.
 Foam.
- Foam.
 Dry shomios
- Dry chemical powder.BCF (where regulations permit).
- Carbon dioxide.
- Water spray or fog Large fires only.
- FIRE FIGHTING
- · Alert Emergency Responders and tell them location and nature of hazard.
- Wear breathing apparatus plus protective gloves.
- · Prevent, by any means available, spillage from entering drains or water course.
- Use water delivered as a fine spray to control fire and cool adjacent area.
- DO NOT approach containers suspected to be hot.
- · Cool fire exposed containers with water spray from a protected location.
- If safe to do so, remove containers from path of fire.
- Equipment should be thoroughly decontaminated after use.

GENERAL FIRE HAZARDS/HAZARDOUS COMBUSTIBLE PRODUCTS

- Combustible solid which burns but propagates flame with difficulty.
- Avoid generating dust, particularly clouds of dust in a confined or unventilated space as dusts may form an explosive mixture with air, and any source of ignition, i.e. flame or spark, will cause fire or explosion. Dust clouds generated by the fine grinding of the solid are a particular hazard; accumulations of fine dust may burn rapidly and fiercely if ignited.
- Dry dust can be charged electrostatically by turbulence, pneumatic transport, pouring, in exhaust ducts and during transport.
- Build-up of electrostatic charge may be prevented by bonding and grounding.
- Powder handling equipment such as dust collectors, dryers and mills may require additional protection measures such as explosion venting.

Combustion products include: carbon monoxide (CO), carbon dioxide (CO2), acrolein, other pyrolysis products typical of burning organic material.

May emit poisonous fumes.

May emit corrosive fumes.

CARE: Contamination of heated / molten liquid with water may cause violent steam explosion, with scattering of hot contents.

FIRE INCOMPATIBILITY

• Avoid contamination with oxidizing agents i.e. nitrates, oxidizing acids, chlorine bleaches, pool chlorine etc. as ignition may result.

PERSONAL PROTECTION

Glasses: Chemical goggles. Gloves: Respirator: Particulate

Section 6 - ACCIDENTAL RELEASE MEASURES

MINOR SPILLS

- Clean up all spills immediately.
- Avoid breathing dust and contact with skin and eyes.
- · Wear protective clothing, gloves, safety glasses and dust respirator.
- Use dry clean up procedures and avoid generating dust.
- Sweep up, shovel up or vacuum up (consider explosion-proof machines designed to be grounded during storage and use).
- Place spilled material in clean, dry, sealable, labeled container.

MAJOR SPILLS

Moderate hazard.

- CAUTION: Advise personnel in area.
- · Alert Emergency Responders and tell them location and nature of hazard.
- · Control personal contact by wearing protective clothing.
- · Prevent, by any means available, spillage from entering drains or water courses.
- Recover product wherever possible.
- IF DRY: Use dry clean up procedures and avoid generating dust. Collect residues and place in sealed plastic bags or other containers for disposal. IF WET: Vacuum/shovel up and place in labelled containers for disposal.
- ALWAYS: Wash area down with large amounts of water and prevent runoff into drains.
- If contamination of drains or waterways occurs, advise emergency services.

ACUTE EXPOSURE GUIDELINE LEVELS (AEGL) (in ppm)

AEGL 1: The airborne concentration of a substance above which it is predicted

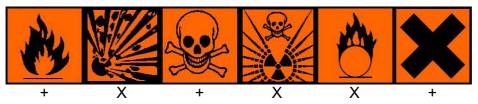
that the general population, including susceptible individuals, could experience notable discomfort, irritation, or certain asymptomatic nonsensory effects. However, the effects are not disabling and are transient and reversible upon cessation of exposure. AEGL 2: The airborne concentration of a substance above which it is predicted that the general population, including susceptible individuals, could experience irreversible or other serious, long-lasting adverse health effects or an impaired ability to escape.

AEGL 3: The airborne concentration of a substance above which it is predicted that the general population, including susceptible individuals, could experience life-threatening health effects or death.

Section 7 - HANDLING AND STORAGE

PROCEDURE FOR HANDLING

- -
 - Avoid all personal contact, including inhalation.
- · Wear protective clothing when risk of exposure occurs.
- Use in a well-ventilated area.
- Prevent concentration in hollows and sumps.
- DO NOT enter confined spaces until atmosphere has been checked.
- DO NOT allow material to contact humans, exposed food or food utensils.
- Avoid contact with incompatible materials.
- When handling, DO NOT eat, drink or smoke.
- Keep containers securely sealed when not in use.
- Avoid physical damage to containers.
- Always wash hands with soap and water after handling.
- Work clothes should be laundered separately.
- Launder contaminated clothing before re-use.
- Use good occupational work practice.
- · Observe manufacturer's storing and handling recommendations.
- Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions are maintained.


Empty containers may contain residual dust which has the potential to accumulate following settling. Such dusts may explode in the presence of an appropriate ignition source.

- · Do NOT cut, drill, grind or weld such containers
- In addition ensure such activity is not performed near full, partially empty or empty containers without appropriate workplace safety authorisation or permit.

RECOMMENDED STORAGE METHODS

- Polyethylene or polypropylene container.
- · Check all containers are clearly labelled and free from leaks.
- STORAGE REQUIREMENTS
- •
- Store in original containers.
- · Keep containers securely sealed.
- Store in a cool, dry, well-ventilated area.
- Store away from incompatible materials and foodstuff containers.
- Protect containers against physical damage and check regularly for leaks.
- Observe manufacturer's storing and handling recommendations.

SAFE STORAGE WITH OTHER CLASSIFIED CHEMICALS

X: Must not be stored together

O: May be stored together with specific preventions

+: May be stored together

Section 8 - EXPOSURE CONTROLS / PERSONAL PROTECTION

EXPOSURE CONTROLS

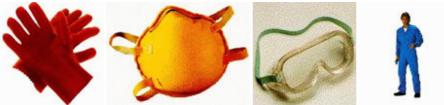
Source	Material	TWA mg/m³		Peak mg/m³	TWA F/CC	Notes
Canada - Alberta Occupational Exposure Limits	stearic acid (Kerosene/Jet fuels, as total hydrocarbon vapour)	200				
Canada - Ontario Occupational Exposure Limits	stearic acid (Diesel fuel, as total hydrocarbons, vapour and aerosol)	100				Skin
Canada - Saskatchewan Occupational Health and Safety Regulations - Contamination Limits	stearic acid (Diesel fuel as total hydrocarbons, (vapour))	100	150			Skin
	staaria aaid (Diasal					

Canada - Alberta Occupational Exposure Limits	steand actu (Diesei fuel, as total hydrocarbons)	100		
US ACGIH Threshold Limit Values (TLV)	stearic acid (Stearates)	10		TLV Basis: eye, skin & upper respiratory tract irritation. Does not include stearates of toxic metals
Canada - British Columbia Occupational Exposure Limits	stearic acid (Stearates)	10 (J)		
Canada - Ontario Occupational Exposure Limits	stearic acid (Stearates (total dust))	10		
Canada - Saskatchewan Occupational Health and Safety Regulations - Contamination Limits	stearic acid (Stearates)	10	20	
Canada - Nova Scotia Occupational Exposure Limits	stearic acid (Stearates)	10		TLV Basis: eye, skin & upper respiratory tract irritation. Does not include stearates of toxic metals
Canada - Prince Edward Island Occupational Exposure Limits	stearic acid (Stearates)	10		TLV Basis: eye, skin & upper respiratory tract irritation. Does not include stearates of toxic metals
Canada - British Columbia Occupational Exposure Limits	stearic acid (Diesel fuel, as total hydrocarbons, Inhalable)	100 (V)		Skin

MATERIAL DATA STEARIC ACID:

■ It is the goal of the ACGIH (and other Agencies) to recommend TLVs (or their equivalent) for all substances for which there is evidence of health effects at airborne concentrations encountered in the workplace.

At this time no TLV has been established, even though this material may produce adverse health effects (as evidenced in animal experiments or clinical experience). Airborne concentrations must be maintained as low as is practically possible and occupational exposure must be kept to a minimum.


NOTE: The ACGIH occupational exposure standard for Particles Not Otherwise Specified (P.N.O.S) does NOT apply.

Sensory irritants are chemicals that produce temporary and undesirable side-effects on the eyes, nose or throat. Historically occupational exposure standards for these irritants have been based on observation of workers' responses to various airborne concentrations. Present day expectations require that nearly every individual should be protected against even minor sensory irritation and exposure standards are established using uncertainty factors or safety factors of 5 to 10 or more. On occasion additional approach, typically used by the TLV committee (USA) in determining respiratory standards for this group of chemicals, has been to assign ceiling values (TLV C) to rapidly acting irritants and to assign short-term exposure limits (TLV STELs) when the weight of evidence from irritation, bioaccumulation and other endpoints combine to warrant such a limit. In contrast the MAK Commission (Germany) uses a five-category system based on intensive odour, local irritation, and elimination half-life. However this system is being replaced to be consistent with the European Union (EU) Scientific Committee for Occupational Exposure Limits (SCOEL); this is more closely allied to that of the USA. OSHA (USA) concluded that exposure to sensory irritants can:

- cause inflammation
- · cause increased susceptibility to other irritants and infectious agents
- lead to permanent injury or dysfunction
- permit greater absorption of hazardous substances and
- acclimate the worker to the irritant warning properties of these substances thus increasing the risk of overexposure.

The stearates have a low order of acute and chronic toxicity. Intratracheal administration of relatively large doses in rats produce varying degrees of pulmonary damage. Acute, gross inhalation exposure has been associated with clinical pneumonitis. A case of "pneumoconiosis with probable heart failure" has been reported in a rubber worker occupationally exposed to zinc stearate dust for 29 years. Several cases of infants developing respiratory distress and in some instances, acute fatal pneumonitis on aspiration of zinc stearate powder, have been reported.

PERSONAL PROTECTION

Consult your EHS staff for recommendations **EYE**

- -
- Safety glasses with side shields.
- Chemical goggles.
- Contact lenses pose a special hazard; soft lenses may absorb irritants and all lenses concentrate them. DO NOT wear contact lenses.

HANDS/FEET

- Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include: such as:
- frequency and duration of contact,

- · chemical resistance of glove material,
- glove thickness and
- dexterity

Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739).

- When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374) is recommended.
- When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374) is recommended.
- Contaminated gloves should be replaced.

Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.

- When handling hot materials wear heat resistant, elbow length gloves.
- Rubber gloves are not recommended when handling hot objects, materials

Protective gloves eg. Leather gloves or gloves with Leather facing

Experience indicates that the following polymers are suitable as glove materials for protection against undissolved, dry solids, where abrasive particles are not present.

- polychloroprene
- nitrile rubber
- butyl rubber
- fluorocaoutchouc

polyvinyl chloride

Gloves should be examined for wear and/ or degradation constantly.

OTHER

When handling hot or molten liquids, wear trousers or overalls outside of boots, to avoid spills entering boots.

Usually handled as molten liquid which requires worker thermal protection and increases hazard of vapor exposure CAUTION: Vapors may be irritating.

- Overalls.
- P.V.C. apron.
- Barrier cream.
- Skin cleansing cream.
- Eve wash unit.
- Respirators may be necessary when engineering and administrative controls do not adequately prevent exposures.
- The decision to use respiratory protection should be based on professional judgment that takes into account toxicity information, exposure measurement data, and frequency and likelihood of the worker's exposure ensure users are not subject to high thermal loads which may result in heat stress or distress due to personal protective equipment (powered, positive flow, full face apparatus may be an option).
- Published occupational exposure limits, where they exist, will assist in determining the adequacy of the selected respiratory These may be government mandated or vendor recommended.
- Certified respirators will be useful for protecting workers from inhalation of particulates when properly selected and fit tested as part of a complete respiratory protection program.
- Use approved positive flow mask if significant quantities of dust becomes airborne.

Try to avoid creating dust conditions.

RESPIRATOR

Protection Factor	Half-Face Respirator	Full-Face Respirator	Powered Air Respirator
10 x PEL	P1	-	PAPR-P1
	Air-line*	-	-
50 x PEL	Air-line**	P2	PAPR-P2
100 x PEL	-	P3	-
		Air-line*	-
100+ x PEL	-	Air-line**	PAPR-P3

- Negative pressure demand ** - Continuous flow

Explanation of Respirator Codes:

Class 1 low to medium absorption capacity filters.

Class 2 medium absorption capacity filters.

Class 3 high absorption capacity filters. PAPR Powered Air Purifying Respirator (positive pressure) cartridge. Type A for use against certain organic gases and vapors.

Type AX for use against low boiling point organic compounds (less than 65°C). Type B for use against certain inorganic gases and other acid gases and vapors.

Type E for use against sulfur dioxide and other acid gases and vapors.

Type K for use against ammonia and organic ammonia derivatives Class P1 intended for use against mechanically generated particulates of sizes most commonly encountered in industry, e.g. asbestos, silica. Class P2 intended for use against both mechanically and thermally generated particulates, e.g. metal fume. Class P3 intended for use against all particulates containing highly toxic materials, e.g. beryllium.

The local concentration of material, quantity and conditions of use determine the type of personal protective equipment required.

Use appropriate NIOSH-certified respirator based on informed professional judgement. In conditions where no reasonable estimate of exposure can be made, assume the exposure is in a concentration IDLH and use NIOSH-certified full face pressure demand SCBA with a minimum service life of 30 minutes, or a combination full facepiece pressure demand SAR with auxiliary self-contained air supply. Respirators provided only for escape from IDLH atmospheres shall be NIOSH-certified for escape from the atmosphere in which they will be used.

ENGINEERING CONTROLS

Local exhaust ventilation is required where solids are handled as powders or crystals; even when particulates are relatively large, a certain proportion will be powdered by mutual friction.

Exhaust ventilation should be designed to prevent accumulation and recirculation of particulates in the workplace.

If in spite of local exhaust an adverse concentration of the substance in air could occur, respiratory protection should be considered. Such protection might consist of:

(a): particle dust respirators, if necessary, combined with an absorption cartridge;

(b): filter respirators with absorption cartridge or canister of the right type;

(c): fresh-air hoods or masks

Build-up of electrostatic charge on the dust particle, may be prevented by bonding and grounding.

Powder handling equipment such as dust collectors, dryers and mills may require additional protection measures such as explosion venting.

Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture

velocities" of fresh circulating	air required to efficiently	remove the contaminant.
Type of Contaminant:		Air Speed

Type of Contaminant:	Air Speed:
direct spray, spray painting in shallow booths, drum filling, conveyer loading, crusher dusts, gas discharge (active generation into zone of rapid air motion)	1-2.5 m/s (200-500 f/min.)
grinding, abrasive blasting, tumbling, high speed wheel generated dusts (released at high initial velocity into zone of very high rapid air motion).	2.5-10 m/s (500-2000 f/min.)
Within each range the appropriate value depends on:	
Lower end of the range	Upper end of the range
1: Room air currents minimal or favorable to capture	1: Disturbing room air currents
2: Contaminants of low toxicity or of nuisance value only	2: Contaminants of high toxicity
3: Intermittent, low production.	3: High production, heavy use
4: Large hood or large air mass in motion	4: Small hood-local control only

Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 4-10 m/s (800-2000 f/min) for extraction of crusher dusts generated 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used.

Section 9 - PHYSICAL AND CHEMICAL PROPERTIES

PHYSICAL PROPERTIES

Divided solid	Molecular Weight	284.5
158	Viscosity	Not Applicable
680 (decomp.)	Solubility in water (g/L)	Partly miscible
384.98 (TCC)	pH (1% solution)	Not available
>680	pH (as supplied)	Not applicable
743	Vapor Pressure (mmHg)	0.998 @ 180C
Not available.	Specific Gravity (water=1)	0.85
Not available.	Relative Vapor Density (air=1)	9.8
Not available.	Evaporation Rate	Not available
	158 680 (decomp.) 384.98 (TCC) >680 743 Not available. Not available.	158Viscosity680 (decomp.)Solubility in water (g/L)384.98 (TCC)pH (1% solution)>680pH (as supplied)743Vapor Pressure (mmHg)Not available.Specific Gravity (water=1)Not available.Relative Vapor Density (air=1)

APPEARANCE

White to pale yellow wax-like solid (flake, crystal or powder); slight tallow-like odour. Slightly soluble in water. Mixes with alcohol, ether, acetone and carbon tetrachloride. Commercial grades may contain varying quantities of palmitic acid.

Section 10 - CHEMICAL STABILITY

CONDITIONS CONTRIBUTING TO INSTABILITY

Presence of incompatible materials.

- Product is considered stable.
- Hazardous polymerization will not occur.

STORAGE INCOMPATIBILITY

Avoid reaction with oxidizing agents.

For incompatible materials - refer to Section 7 - Handling and Storage.

Section 11 - TOXICOLOGICAL INFORMATION

stearic acid

TOXICITY AND IRRITATION

unless otherwise specified data extracted from RTECS - Register of Toxic Effects of Chemical Substances.

TOXICITY	IRRITATION
Intravenous (rat) LD50: 21.5 mg/kg	Skin (human): 75 mg/3d-I-Mild
Intravenous (mouse) LD50: 23 mg/kg	Skin (rabbit):500 mg/24h-Moderate

Dermal (rabbit) LD50: >5000 mg/kg

Asthma-like symptoms may continue for months or even years after exposure to the material ceases. This may be due to a Astimia-like symptoms may continue for months of even years after exposure to the material ceases. This may be due to a non-allergenic condition known as reactive airways dysfunction syndrome (RADS) which can occur following exposure to high levels of highly irritating compound. Key criteria for the diagnosis of RADS include the absence of preceding respiratory disease, in a non-atopic individual, with abrupt onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the irritant. A reversible airflow pattern, on spirometry, with the presence of moderate to severe bronchial hyperreactivity on methacholine challenge testing and the lack of minimal lymphocytic inflammation, without eosinophilia, have also been included in the criteria for diagnosis of RADS. RADS (or asthma) following an irritating inhalation is an infrequent disorder with rates related to the concentration of and duration of exposure to the irritating substance. Industrial bronchitis, on the other hand, is a disorder that occurs as result of exposure due to high concentrations of irritating substance (often particulate in nature) and is completely reversible after exposure ceases. The disorder is characterised by dyspnea, cough and mucus production. The material may cause skin irritation after prolonged or repeated exposure and may produce on contact skin redness,

swelling, the production of vesicles, scaling and thickening of the skin. Equivocal tumorigen by RTEC criteria

SKIN			
stearic acid	Canada - Ontario Occupational Exposure Limits - Skin	Notes	Skin
stearic acid	US AIHA Workplace Environmental Exposure Levels (WEELs) - Skin	Notes	Skin
stearic acid	Canada - Quebec Permissible Exposure Values for Airborne Contaminants - Skin (French)	Notes	Skin
stearic acid	Canada - British Columbia Occupational Exposure Limits - Skin	Notation	Skin
stearic acid	Canada - Alberta Occupational Exposure Limits - Skin	Substance Interaction	1

Section 12 - ECOLOGICAL INFORMATION

Refer to data for ingredients, which follows: STEARIC ACID:

Fish LC50 (96hr.) (mg/l):

DO NOT discharge into sewer or waterways. BOD 5 if unstated: 0.8-1.44,4% COD: 30% Anaerobic effects: sig degrad Potential to bioaccumulate log Pow >7

Ecotoxicity

Persistence: Water/Soil Ingredient Persistence: Air stearic acid IOW

Bioaccumulation LOW

Mobility LOW

14

Section 13 - DISPOSAL CONSIDERATIONS

Disposal Instructions

All waste must be handled in accordance with local, state and federal regulations.

Legislation addressing waste disposal requirements may differ by country, state and/ or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked.

A Hierarchy of Controls seems to be common - the user should investigate:

- Reduction
- . Reuse Recycling
- Disposal (if all else fails)

This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. Shelf life considerations should also be applied in making decisions of this type. Note that properties of a material may change in use, and recycling or reuse may not always be appropriate.

DO NOT allow wash water from cleaning equipment to enter drains. Collect all wash water for treatment before disposal.

- Recycle wherever possible.
- Consult manufacturer for recycling options or consult Waste Management Authority for disposal if no suitable treatment or disposal facility can be identified.
- Dispose of by: Burial in a licensed land-fill or Incineration in a licensed apparatus (after admixture with suitable combustible material)
- Decontaminate empty containers. Observe all label safeguards until containers are cleaned and destroyed.

Section 14 - TRANSPORTATION INFORMATION

NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS: DOT, IATA, IMDG

Section 15 - REGULATORY INFORMATION

stearic acid (CAS: 57-11-4) is found on the following regulatory lists;

"Canada Domestic Substances List (DSL)", "Canada Ingredient Disclosure List (SOR/88-64)", "Canada Toxicological Index Service - Workplace Hazardous Materials Information System - WHMIS (English)", "Canada Toxicological Index Service -Workplace Hazardous Materials Information System - WHMIS (French)", "International Council of Chemical Associations (ICCA) - High Production Volume List", "OECD Representative List of High Production Volume (HPV) Chemicals", "US Cosmetic Ingredient Review (CIR) Cosmetic ingredients found safe as used", "US DOE Temporary Emergency Exposure Limits (TEELs)", "US DOT Coast Guard Bulk Hazardous Materials - List of Flammable and Combustible Bulk Liquid Cargoes", "US EPA High Production Volume Program Chemical List", "US FDA Indirect Food Additives: Adhesives and Components of Coatings - Substances for Use Only as Components of Adhesives - Adhesives", "US Food Additive Database", "US Toxic Substances Control Act (TSCA) - Inventory"

Section 16 - OTHER INFORMATION

LIMITED EVIDENCE

Cumulative effects may result following exposure*.
 * (limited evidence)

(limited evidence).

Reasonable care has been taken in the preparation of this information, but the author makes no warranty of merchantability or any other warranty, expressed or implied, with respect to this information. The author makes no representations and assumes no liability for any direct, incidental or consequential damages resulting from its use. For additional technical information please call our toxicology department on +800 CHEMCALL.

Classification of the mixture and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references. A list of reference resources used to assist the committee may be found at: www.chemwatch.net/references.

• The (M)SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

This document is copyright. Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH. TEL (+61 3) 9572 4700.

Issue Date: Nov-20-2009 Print Date:Apr-21-2010