Guanabenz acetate

sc-203590

Material Safety Data Sheet

Hazard Alert Code Key:

EXTREME

HIGH

MODERATE

LOW

Section 1 - CHEMICAL PRODUCT AND COMPANY IDENTIFICATION

PRODUCT NAME

Guanabenz acetate

STATEMENT OF HAZARDOUS NATURE

ARDOUS SUBSTANCE ACCORDING TO OSHA 29 CFR 1910.1200

NFPA

SUPPLIER

Company: Santa Cruz Biotechnology, Inc.

Address:

2145 Delaware Ave

Santa Cruz, CA 95060

Telephone: 800.457.3801 or 831.457.3800

Emergency Tel: CHEMWATCH: From within the US and Canada: 877-715-9305

Emergency Tel: From outside the US and Canada: +800 2436 2255 (1-800-CHEMCALL) or call +613 9573 3112

PRODUCT USE

Antihypertensive agent which appears to act centrally by stimulating alpha-adrenergic receptors and producing a reduction in sympathetic tone. Also acts peripherally, partly by blocking alpha-adrenergic receptors and partly by reducing vascular reactivity. Used in the treatment of all grades of hypertension. Usually given by mouth.

SYNONYMS

hydrazinecarboximadamide, C10-H12-Cl2-N4-O2. "2-[(2b-dichlorophenyl)methylene]-"2-[(2bmonoacetate", dichlorophenyl)methylene]-, monoacetate", "guanidine, [(2b-dichlorobenzylidene)amin dichlorobenzylidene)amino]guanidine monoacetate", Rexitene, Guanabenz, Wytensin, [(2b-dichlorobenzylidene)amino]-"[(2, monoacetate" Wy-8678, antihypertensive

Section 2 - HAZARDS IDENTIFICATION

CANADIAN WHMIS SYMBOLS

EMERGENCY OVERVIEW

POTENTIAL HEALTH EFFECTS ACUTE HEALTH EFFECTS

SWALLOWED

- Although ingestion is not thought to produce harmful effects, the material may still be damaging to the health of the individual following ingestion, especially where pre-existing organ (e.g. liver, kidney) damage is evident. Present definitions of harmful or toxic substances are generally based on doses producing mortality (death) rather than those producing morbidity (disease, ill-health). Gastrointestinal tract discomfort may produce nausea and vomiting. In an occupational setting however, ingestion of insignificant quantities is not thought to be cause for concern.
- Sympathomimetics, which mimic stimulation of the sympathetic nerves, causing a stimulatory effect on the heart and central nervous system, constriction of blood vessels supplying the skin and mucous membranes, dilation of blood vessels supplying muscles of movement, and widening of the airways. These drugs may act on the receptor or the release of the neurotransmitter noradrenaline. Central nervous effects include fear (feeling of "impending disaster"), anxiety, restlessness, tremor, sleep disturbance, confusion, irritability, weakness and hallucinations. There can be nausea and vomiting, loss of appetite, problems

with urination, shortness of breath, disturbance in glucose levels and acid-base balance, sweating, excess saliva production and headache. Cardiovascular effects include changes in heart rate, irregularities in heart rhythm, low blood pressure with dizziness, fainting and flushing, or high blood pressure. Aerosols may cause death due to irregularities in the rhythm of the ventricles (two of the four chambers of the heart). Inhaling the material may cause death of heart tissue and heart attack.

■ Stimulating alpha-adrenergic receptors causes blood vessels to dilate, sometimes to the extent that gangrene occurs in the

■ Stimulating alpha-adrenergic receptors causes blood vessels to dilate, sometimes to the extent that gangrene occurs in the fingers and toes, and there is increased blood pressure. This can also cause swelling of the lungs and bleeding in the brain. The heart rate may be slowed. Two classes of receptors (alpha-1) and alpha-2) are thought to be responsible for mediating these effects. The former are thought to be responsible for causing the constriction of blood vessels when sympathomimetics are given; the latter for reduction of bowel activity when alpha-adrenergic agonists are given.

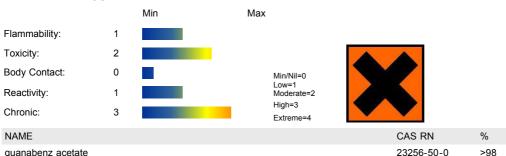
EYE

■ Although the material is not thought to be an irritant, direct contact with the eye may produce transient discomfort characterized by tearing or conjunctival redness (as with windburn).

SKIN

- The material is not thought to produce adverse health effects or skin irritation following contact (as classified using animal models). Nevertheless, good hygiene practice requires that exposure be kept to a minimum and that suitable gloves be used in an occupational setting.
- Open cuts, abraded or irritated skin should not be exposed to this material.

INHALED


- The material is not thought to produce respiratory irritation (as classified using animal models). Nevertheless inhalation of the material, especially for prolonged periods, may produce respiratory discomfort and occasionally, distress.
- Persons with impaired respiratory function, airway diseases and conditions such as emphysema or chronic bronchitis, may incur further disability if excessive concentrations of particulate are inhaled.

CHRONIC HEALTH EFFECTS

■ Principal routes of exposure are by accidental skin and eye contact andinhalation of generated dusts. High doses produced a lowered pregnancy rate in animals, low body weight and skeletal abnormalities of the foetus and a decreased foetal survival rate. The fertility of treated males may also be affected. No evidence of carcinogenic activity in rats was evident in a two year study at doses up to 9.5 mg/kg/day.

Section 3 - COMPOSITION / INFORMATION ON INGREDIENTS

HAZARD RATINGS

Section 4 - FIRST AID MEASURES

SWALLOWED

■ If poisoning occurs, contact a doctor or Poisons Information Center. Poison Information Centers in each State capital city can provide additional assistance.

EYE

- If this product comes in contact with the eyes:
- Wash out immediately with fresh running water.
- Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally
 lifting the upper and lower lids.
- If pain persists or recurs seek medical attention.
- Removal of contact lenses after an eye injury should only be undertaken by skilled personnel.

SKIN

- If skin contact occurs:
- Immediately remove all contaminated clothing, including footwear
- Flush skin and hair with running water (and soap if available).
- · Seek medical attention in event of irritation.

INHALED

-
- If dust is inhaled, remove from contaminated area.
- Encourage patient to blow nose to ensure clear passage of breathing.
- If irritation or discomfort persists seek medical attention.

NOTES TO PHYSICIAN

A three-year old child who had taken 12 mg guanabenz responded to atropine and dopamine. Naloxone had little effect.

Treatment as for clonidine hydrochloride intoxications: If overdose occurs the stomach should be emptied by aspiration and lavage. Severe hypotension may respond to placing the patient in the supine position with the feet raised. The effects of gross overdosage may respond

to the infusion of plasma.

citing from:

MARTINDALE: The Extra Pharmacopoeia, 27th Ed.

Upper Explosive Limit (%): Specific Gravity (water=1): Lower Explosive Limit (%): Not available Not available Not available		
Specific Gravity (water=1): Lower Explosive Limit (%): Not available Not available	Upper Explosive Limit (%):	Not available
Lower Explosive Limit (%): Not available		
Lower Explosive Limit (%): Not available	Specific Gravity (water=1):	Not available
	oposino oravity (water 1).	Tot available
	Lower Evolosive Limit (%):	Not available
Deletine Manage Deposits (signal). Net excellent	LOWER Explosive Little (70).	NOT available
	Relative Vapor Density (air=1):	Not available

EXTINGUISHING MEDIA

.

- Water spray or fog.
- Foam.
- · Dry chemical powder.
- · BCF (where regulations permit).
- Carbon dioxide.

FIRE FIGHTING

- · Alert Emergency Responders and tell them location and nature of hazard.
- Wear breathing apparatus plus protective gloves for fire only.
- Prevent, by any means available, spillage from entering drains or water course.
- Use fire fighting procedures suitable for surrounding area.
- Do not approach containers suspected to be hot.
- · Cool fire exposed containers with water spray from a protected location.
- · If safe to do so, remove containers from path of fire.
- Equipment should be thoroughly decontaminated after use.

GENERAL FIRE HAZARDS/HAZARDOUS COMBUSTIBLE PRODUCTS

- · Solid which exhibits difficult combustion or is difficult to ignite.
- Avoid generating dust, particularly clouds of dust in a confined or unventilated space as dusts may form an explosive
 mixture with air, and any source of ignition, i.e. flame or spark, will cause fire or explosion. Dust clouds generated by the
 fine grinding of the solid are a particular hazard; accumulations of fine dust may burn rapidly and fiercely if ignited.
- Dry dust can be charged electrostatically by turbulence, pneumatic transport, pouring, in exhaust ducts and during transport.
- Build-up of electrostatic charge may be prevented by bonding and grounding.
- Powder handling equipment such as dust collectors, dryers and mills may require additional protection measures such as explosion venting.

Combustion products include: carbon monoxide (CO), nitrogen oxides (NOx) and hydrogen chloride.

FIRE INCOMPATIBILITY

■ Avoid contamination with oxidizing agents i.e. nitrates, oxidizing acids,chlorine bleaches, pool chlorine etc. as ignition may result

PERSONAL PROTECTION

Glasses:

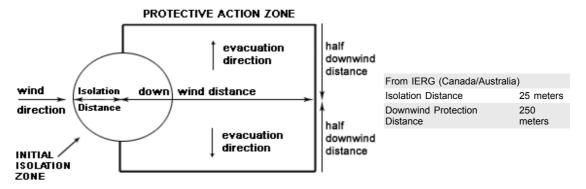
Chemical goggles

Gloves: Respirator:

Particulate

Section 6 - ACCIDENTAL RELEASE MEASURES

MINOR SPILLS


.

- Remove all ignition sources.
- Clean up all spills immediately.
- Avoid contact with skin and eyes.
- · Control personal contact by using protective equipment.
- Use dry clean up procedures and avoid generating dust.
- · Place in a suitable, labelled container for waste disposal.

MAJOR SPILLS

- Clean up all spills immediately.
- Wear protective clothing, safety glasses, dust mask, gloves.
- Secure load if safe to do so. Bundle/collect recoverable product.
- Use dry clean up procedures and avoid generating dust.
- Vacuum up (consider explosion-proof machines designed to be grounded during storage and use).
- Water may be used to prevent dusting.
- Collect remaining material in containers with covers for disposal.
- Flush spill area with water.

PROTECTIVE ACTIONS FOR SPILL

FOOTNOTES

1 PROTECTIVE ACTION ZONE is defined as the area in which people are at risk of harmful exposure. This zone assumes that random changes in wind direction confines the vapour plume to an area within 30 degrees on either side of the predominant wind direction, resulting in a crosswind protective action distance equal to the downwind protective action distance.

2 PROTECTIVE ACTIONS should be initiated to the extent possible, beginning with those closest to the spill and working away from the site in the downwind

direction. Within the protective action zone a level of vapour concentration may exist resulting in nearly all unprotected persons becoming incapacitated and unable to take protective action and/or incurring serious or irreversible health effects.

unable to take protective action and/or incurring serious or irreversible health effects.

3 INITIAL ISOLATION ZONE is determined as an area, including upwind of the incident, within which a high probability of localised wind reversal may expose nearly all persons without appropriate protection to life-threatening concentrations of the material.

4 SMALL SPILLS involve a leaking package of 200 litres (55 US gallons) or less, such as a drum (jerrican or box with inner containers). Larger packages leaking less than 200 litres and compressed gas leaking from a small cylinder are also considered "small spills". LARGE SPILLS involve many small leaking packages or a leaking package of greater than 200 litres, such as a cargo tank, portable tank or a "one-tonne" compressed gas cylinder.

5 Guide 151 is taken from the US DOT emergency response guide book.

6 IERG information is derived from CANUTEC - Transport Canada.

ACUTE EXPOSURE GUIDELINE LEVELS (AEGL) (in ppm)

AEGL 1: The airborne concentration of a substance above which it is predicted that the general population, including susceptible individuals, could experience notable discomfort, irritation, or certain asymptomatic nonsensory effects. However, the effects are not disabling and are transient and reversible upon cessation of exposure.

AEGL 2: The airborne concentration of a substance above which it is predicted that the general population, including susceptible individuals, could experience irreversible or other serious, long-lasting adverse health effects or an impaired ability to escape.

AEGL 3: The airborne concentration of a substance above which it is predicted that the general population, including susceptible individuals, could experience life-threatening health effects or death.

Section 7 - HANDLING AND STORAGE

PROCEDURE FOR HANDLING

- Avoid generating and breathing dust
- Avoid contact with skin and eves
- Wear nominated personal protective equipment when handling.
- Use in a well-ventilated area.
- Use good occupational work practices.
- Observe manufacturer's storing and handling recommendations.

RECOMMENDED STORAGE METHODS

- Packaging as recommended by manufacturer.
- Check that containers are clearly labele

STORAGE REQUIREMENTS

- Store in original containers.
- Keep containers securely sealed.
- Store in a cool, dry, well-ventilated area.
- Store away from incompatible materials and foodstuff containers.
- Protect containers against physical damage and check regularly for leaks.
- Observe manufacturer's storing and handling recommendations.

SAFE STORAGE WITH OTHER CLASSIFIED CHEMICALS

- X: Must not be stored together
- O: May be stored together with specific preventions
- +: May be stored together

Section 8 - EXPOSURE CONTROLS / PERSONAL PROTECTION

EXPOSURE CONTROLS

Source	Material	TWA mg/m³		Peak mg/m³	Notes
US - Oregon Permissible Exposure Limits (Z3)	guanabenz acetate (Inert or Nuisance Dust: (d) Total dust)	10			*
US OSHA Permissible Exposure Levels (PELs) - Table Z3 guanabenz acetate (Inert or Nuisance Dust: (d) Respirable fraction)		5			
US OSHA Permissible Exposure Levels (PELs) - Table Z3	guanabenz acetate (Inert or Nuisance Dust: (d) Total dust)	15			
US - Hawaii Air Contaminant Limits	guanabenz acetate (Particulates not other wise regulated - Total dust)	10			
US - Hawaii Air Contaminant Limits	guanabenz acetate (Particulates not other wise regulated - Respirable fraction)	5			
	quanahanz acatata (Inart ar				

US - Oregon Permissible Exposure Limits (Z3)	Nuisance Dust: (d) Respirable fraction)	5	*
US - Tennessee Occupational Exposure Limits - Limits For Air Contaminants	guanabenz acetate (Particulates not otherwise regulated Respirable fraction)	5	
US - Wyoming Toxic and Hazardous Substances Table Z1 Limits for Air Contaminants	guanabenz acetate (Particulates not otherwise regulated (PNOR)(f)- Respirable fraction)	5	
US - Michigan Exposure Limits for Air Contaminants	guanabenz acetate (Particulates not otherwise regulated, Respirable dust)	5	

MATERIAL DATA

GUANABENZ ACETATE:

- These "dusts" have little adverse effect on the lungs and do not produce toxic effects or organic disease. Although there is no dust which does not evoke some cellular response at sufficiently high concentrations, the cellular response caused by P.N.O.C.s has the following characteristics:
- the architecture of the air spaces remain intact,
- scar tissue (collagen) is not synthesised to any degree,
- tissue reaction is potentially reversible.

Extensive concentrations of P.N.O.C.s may:

- · seriously reduce visibility,
- cause unpleasant deposits in the eyes, ears and nasal passages,
- contribute to skin or mucous membrane injury by chemical or mechanical action, per se, or by the rigorous skin cleansing procedures necessary for their removal. [ACGIH]

This limit does not apply:

- to brief exposures to higher concentrations
- nor does it apply to those substances that may cause physiological impairment at lower concentrations but for which a TLV has as yet to be determined.

This exposure standard applies to particles which

- are insoluble or poorly soluble* in water or, preferably, in aqueous lung fluid (if data is available) and
- have a low toxicity (i.e., are not cytotoxic, genotoxic, or otherwise chemically reactive with lung tissue, and do not emit ionizing radiation, cause immune sensitization, or cause toxic effects other than by inflammation or by a mechanism of lung overload)

PERSONAL PROTECTION

Consult your EHS staff for recommendations

No special equipment needed when handling small quantities of substance.

For bulk handling wear:

Chemical goggles or

Face shield

HANDS/FEET

Rubber gloves

PVC gloves

Protective shoe covers Head covering.

OTHER

No special equipment when handling small quantities of substance otherwise:

Coveralls

For Emergencies:

Vinyl suit

Safety shower

RESPIRATOR

High Efficiency Dust Respirator (P2, P3)

For non-routine emergencies wear full face mask self-contained breathing apparatus.

RESPIRATOR

Protection Factor	Half-Face Respirator	Full-Face Respirator	Powered Air Respirator
10 x PEL	P1	-	PAPR-P1
	Air-line*	-	-
50 x PEL	Air-line**	P2	PAPR-P2
100 x PEL	-	P3	-
		Air-line*	-
100+ x PEL	-	Air-line**	PAPR-P3

* - Negative pressure demand ** - Continuous flow

Explanation of Respirator Codes:

Class 1 low to medium absorption capacity filters.

Class 2 medium absorption capacity filters

Class 3 high absorption capacity filters.
PAPR Powered Air Purifying Respirator (positive pressure) cartridge.
Type A for use against certain organic gases and vapors.
Type AX for use against low boiling point organic compounds (less than 65°C).

Type B for use against certain inorganic gases and other acid gases and vapors.

Type E for use against sulfur dioxide and other acid gases and vapors.

Type K for use against ammonia and organic ammonia derivatives

Class P1 intended for use against mechanically generated particulates of sizes most commonly encountered in industry, e.g. asbestos, silica.

Class P2 intended for use against both mechanically and thermally generated particulates, e.g. metal fume.

Class P3 intended for use against all particulates containing highly toxic materials, e.g. beryllium. The local concentration of material, quantity and conditions of use determine the type of personal protective equipment

Use appropriate NIOSH-certified respirator based on informed professional judgement. In conditions where no reasonable estimate of exposure can be made, assume the exposure is in a concentration IDLH and use NIOSH-certified full face pressure demand SCBA with a minimum service life of 30 minutes, or a combination full facepiece pressure demand SAR with auxiliary self-contained air supply. Respirators provided only for escape from IDLH atmospheres shall be NIOSH-certified for escape from the atmosphere in which they will be used.

ENGINEERING CONTROLS

■ Enclosed local exhaust ventilation is required at points of dust, fume or vapor generation.

HEPA terminated local exhaust ventilation should be considered at point of generation of dust, fumes or vapors.

Barrier protection or laminar flow cabinets should be considered for laboratory scale handling.

The need for respiratory protection should also be assessed where incidental or accidental exposure is anticipated: Dependent on levels of contamination, PAPR, full face air purifying devices with P2 or P3 filters or air supplied respirators should be evaluated

Fume-hoods and other open-face containment devices are acceptable when face velocities of at least 1 m/s (200 feet/minute) are achieved. Partitions, barriers, and other partial containment technologies are required to prevent migration of the material to uncontrolled areas. For non-routine emergencies maximum local and general exhaust are necessary. Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to effectively remove the contaminant.

Type of Contaminant:	Air Speed:
solvent, vapors, etc. evaporating from tank (in still air)	0.25-0.5 m/s (50-100 f/min.)
aerosols, fumes from pouring operations, intermittent container filling, low speed conveyer transfers (released at low velocity into zone of active generation)	0.5-1 m/s (100-200 f/min.)
direct spray, drum filling, conveyer loading, crusher dusts, gas discharge (active generation into zone of rapid air motion) Within each range the appropriate value depends on:	1-2.5 m/s (200-500 f/min.)
Lower end of the range	Upper end of the range
1: Room air currents minimal or favourable to capture	1: Disturbing room air currents
2: Contaminants of low toxicity or of nuisance value only.	2: Contaminants of high toxicity
3: Intermittent, low production.	3: High production, heavy use
4: Large hood or large air mass in motion	4: Small hood-local control only
Simple theory shows that air velocity falls rapidly with distant	ace away from the opening of a simple extraction nine. Velocity

Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 1-2.5 m/s (200-500 f/min.) for extraction of gases discharged 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used.

Section 9 - PHYSICAL AND CHEMICAL PROPERTIES

PHYSICAL PROPERTIES

Solid.

Mixes with water.

State	Divided solid	Molecular Weight	291.14
Melting Range (°F)	Not available	Boiling Range (°F)	Not available
Solubility in water (g/L)	Miscible	Flash Point (°F)	Not available
pH (1% solution)	5.5-70. (0.7%)	Decomposition Temp (°F)	Not available
pH (as supplied)	Not applicable	Autoignition Temp (°F)	Not available
Vapour Pressure (mmHG)	Negligible	Upper Explosive Limit (%)	Not available
Specific Gravity (water=1)	Not available	Lower Explosive Limit (%)	Not available
Relative Vapor Density (air=1)	Not available	Volatile Component (%vol)	Negligible
Evaporation Rate	Not available		

APPEARANCE

White, odourless, crystalline powder with a bitter taste; mixes with water (1%), dilute hydrochloric acid, alcohol and propylene glycol

Section 10 - CHEMICAL STABILITY

CONDITIONS CONTRIBUTING TO INSTABILITY

- Presence of incompatible materials. Product is considered stable.
- Hazardous polymerization will not occur.

STORAGE INCOMPATIBILITY

■ Be sure container is tightly closed when not in use.

For incompatible materials - refer to Section 7 - Handling and Storage.

Section 11 - TOXICOLOGICAL INFORMATION

guanabenz acetate

■ unless otherwise specified data extracted from RTECS - Register of Toxic Effects of Chemical Substances.

TOXICITY **IRRITATION**

Intraperitoneal (mouse) LD50: 100 mg/kg

Nil Reported

■ Exposure to the material for prolonged periods may cause physical defects in the developing embryo (teratogenesis).

Section 12 - ECOLOGICAL INFORMATION

Refer to data for ingredients, which follows: GUANABENZ ACETATE:

Section 13 - DISPOSAL CONSIDERATIONS

Disposal Instructions

All waste must be handled in accordance with local, state and federal regulations.

- Recycle wherever possible. Special hazard may exist specialist advicemay be required.
- Consult manufacturer for recycling options.
- Consult Waste Management Authority for disposal.
- Bury or incinerate residue at an approved site.
- Decontaminate empty containers. Observe all label safeguards untilcontainers are cleaned and destroyed.
- Puncture containers to prevent re-use and bury at an authorized landfill.

Section 14 - TRANSPORTATION INFORMATION

DOT:

Symbols:	None	Hazard class or Division:	6.1			
Identification Numbers:	UN3249	PG:	III			
Label Codes:	6.1	Special provisions:	T1, TP33			
Packaging: Exceptions:	153	Packaging: Non-bulk:	213			
Packaging: Exceptions:	153	Quantity limitations: Passenger aircraft/rail:	5 kg			
Quantity Limitations: Cargo aircraft only:	5 kg	Vessel stowage: Location:	С			
Vessel stowage: Other:	40					
Hazardous materials descriptions and proper shipping names:						

Hazardous materials descriptions and proper shipping names: Medicine, solid, toxic, n.o.s.

Air Transport IATA:

ICAO/IATA Class:	6.1	ICAO/IATA Subrisk:	None
UN/ID Number:	3249	Packing Group:	III
Special provisions:	A3		

Shipping Name: MEDICINE, SOLID, TOXIC, N.O.S.(CONTAINS GUANABENZ ACETATE)

Maritime Transport IMDG:

IMDG Class:	6.1	IMDG Subrisk:	None	
UN Number:	3249	Packing Group:	III	
EMS Number:	F-A,S-A	Special provisions:	221 223 944	
Limited Quantities:	5 ka			

Shipping Name: MEDICINE, SOLID, TOXIC, N.O.S.(contains guanabenz acetate)

Section 15 - REGULATORY INFORMATION

guanabenz acetate (CAS: 23256-50-0) is found on the following regulatory lists;
"US - Hawaii Air Contaminant Limits", "US - Oregon Permissible Exposure Limits (Z3)", "US OSHA Permissible Exposure Levels (PELs) - Table Z3"

Section 16 - OTHER INFORMATION

LIMITED EVIDENCE

- Inhalation and/or ingestion may produce health damage*.
- May be harmful to the fetus/ embryo*.
 * (limited evidence).

Reasonable care has been taken in the preparation of this information, but the author makes no warranty of merchantability or any other warranty, expressed or implied, with respect to this information. The author makes no representations and assumes no liability for any direct, incidental or consequential damages resulting from its use. For additional technical information please call our toxicology department on +800 CHEMCALL.

- Classification of the mixture and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references.

 A list of reference resources used to assist the committee may be found at: www.chemwatch.net/references.
- The (M)SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

This document is copyright. Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH. TEL (+61 3) 9572 4700.

Issue Date: Mar-30-2006 Print Date:Apr-21-2010