sc-203739

Material Safety Data Sheet

The Power to Ownsis

Hazard Alert Code Key:

EXTREME

HIGH

MODERATE

LOW

Section 1 - CHEMICAL PRODUCT AND COMPANY IDENTIFICATION

PRODUCT NAME

Iodonitrotetrazolium chloride

STATEMENT OF HAZARDOUS NATURE

CONSIDERED A HAZARDOUS SUBSTANCE ACCORDING TO OSHA 29 CFR 1910.1200.

NFPA

SUPPLIER

Company: Santa Cruz Biotechnology, Inc.

Address:

2145 Delaware Ave Santa Cruz, CA 95060

Telephone: 800.457.3801 or 831.457.3800

Emergency Tel: CHEMWATCH: From within the US and Canada:

877-715-9305

Emergency Tel: From outside the US and Canada: +800 2436 2255

(1-800-CHEMCALL) or call +613 9573 3112

PRODUCT USE

Reagent used in dehydrogenase determinations.

SYNONYMS

C19-H13-N5-O2-CI-I, 2-(p-iodophenyl)-3-p-nitrophenyl-5-phenyltetrazoli, 2-(p-iodophenyl)-3-p-nitrophenyl-5-phenyltetrazoli, "um chloride", 2-(4-iodophenyl)-3-(4-nitrophenyl)-5-phenyltetrazo, "lium chloride", INT, "dehydrogenase reagent"

Section 2 - HAZARDS IDENTIFICATION

CANADIAN WHMIS SYMBOLS

EMERGENCY OVERVIEW

RISK

Harmful by inhalation, in contact with skin and if swallowed. Irritating to eyes, respiratory system and skin. Highly flammable.

sc-203739

The Power to Oscotion

Hazard Alert Code Key: EXTREME HIGH MODERATE LOW

POTENTIAL HEALTH EFFECTS

ACUTE HEALTH EFFECTS

SWALLOWED

■ Accidental ingestion of the material may be harmful; animal experiments indicate that ingestion of less than 150 gram may be fatal or may produce serious damage to the health of the individual.

EYE

■ This material can cause eye irritation and damage in some persons.

SKIN

- Skin contact with the material may be harmful; systemic effects may resultfollowing absorption.
- This material can cause inflammation of the skin oncontact in some persons.
- The material may accentuate any pre-existing dermatitis condition.
- Open cuts, abraded or irritated skin should not be exposed to this material.
- Entry into the blood-stream, through, for example, cuts, abrasions or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected.

INHALED

- Inhalation of dusts, generated by the material, during the course of normalhandling, may be harmful.
- The material can cause respiratory irritation in some persons. The body's response to such irritation can cause further lung damage.
- Inhalation of vapours may cause drowsiness and dizziness. This may be accompanied by narcosis, reduced alertness, loss of reflexes, lack of coordination and vertigo.
- Persons with impaired respiratory function, airway diseases and conditions such as emphysema or chronic bronchitis, may incur further disability if excessive concentrations of particulate are inhaled.
- Minor but regular methanol exposures may effect the central nervous system, optic nerves and retinae. Symptoms may be delayed, with headache, fatigue, nausea, blurring of vision and double vision. Continued or severe exposures may cause damage to optic nerves, which may become severe with permanent visual impairment even blindness resulting.

WARNING: Methanol is only slowly eliminated from the body and should be regarded as a cumulative poison which cannot be made non-harmful [CCINFO].

CHRONIC HEALTH EFFECTS

■ Long-term exposure to respiratory irritants may result in disease of the airways involving difficult breathing and related systemic problems. Limited evidence suggests that repeated or long-term occupational exposure may produce cumulative health effects involving organs or biochemical systems.

Long term exposure to high dust concentrations may cause changes in lung function i.e. pneumoconiosis; caused by particles less than 0.5 micron penetrating and remaining in the lung. Prime symptom is breathlessness; lung shadows show on X-ray.

Long-term exposure to methanol vapor, at concentrations exceeding 3000 ppm, may produce cumulative effects characterized by gastrointestinal disturbances (nausea, vomiting), headache, ringing in the ears, insomnia, trembling, unsteady gait, vertigo, conjunctivitis and clouded or double vision. Liver and/or kidney injury may also result. Some individuals show severe eye damage following prolonged exposure to 800 ppm of the vapor.

Section 3 - COMPOSITION / INFORMATION ON INGREDIENTS

HAZARD RATINGS

methanol

		Min	Max		
Flammability:	3			_	
Toxicity:	2				
Body Contact:	2		Min/Nil=0 Low=1		
Reactivity:	1		Moderate=2		
Chronic:	2		High=3 Extreme=4		
NAME				CAS RN	%
iodonitrotetrazolium chl	oride			146-68-9	>95
NOTE: Product of com	merce	may contain			

67-56-1

<5

sc-203739

Material Safety Data Sheet

Hazard Alert Code Key: EXTREME HIGH MODERATE LOW

Section 4 - FIRST AID MEASURES

SWALLOWED

•

- IF SWALLOWED, REFER FOR MEDICAL ATTENTION, WHERE POSSIBLE, WITHOUT DELAY.
- Where Medical attention is not immediately available or where the patient is more than 15 minutes from a hospital or unless instructed otherwise:
- For advice, contact a Poisons Information Center or a doctor.
- Urgent hospital treatment is likely to be needed.
- If conscious, give water to drink.
- INDUCE vomiting with fingers down the back of the throat, ONLY IF CONSCIOUS. Lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration.

NOTE: Wear a protective glove when inducing vomiting by mechanical means.

- In the mean time, qualified first-aid personnel should treat the patient following observation and employing supportive measures as indicated by the patient's condition.
- If the services of a medical officer or medical doctor are readily available, the patient should be placed in his/her care and a copy of the MSDS should be provided. Further action will be the responsibility of the medical specialist.
- If medical attention is not available on the worksite or surroundings send the patient to a hospital together with a copy of the MSDS.

FYF

- If this product comes in contact with the eyes:
- Wash out immediately with fresh running water.
- Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids.
- If pain persists or recurs seek medical attention.
- Removal of contact lenses after an eye injury should only be undertaken by skilled personnel.

SKIN

- If skin contact occurs:
- Immediately remove all contaminated clothing, including footwear
- Flush skin and hair with running water (and soap if available).
- Seek medical attention in event of irritation.

INHALED

. . .

- If fumes or combustion products are inhaled remove from contaminated area.
- Lay patient down. Keep warm and rested.
- Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures.
- Apply artificial respiration if not breathing, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained.
 Perform CPR if necessary.
- Transport to hospital, or doctor, without delay.

NOTES TO PHYSICIAN

■ Treat symptomatically.

For acute and short term repeated exposures to methanol:

- Toxicity results from accumulation of formaldehyde/formic acid.
- Clinical signs are usually limited to CNS, eyes and GI tract Severe metabolic acidosis may produce dyspnea and profound systemic
 effects which may become intractable. All symptomatic patients should have arterial pH measured. Evaluate airway, breathing and
 circulation.
- Stabilise obtunded patients by giving naloxone, glucose and thiamine.
- Decontaminate with Ipecac or lavage for patients presenting 2 hours post-ingestion. Charcoal does not absorb well; the usefulness of cathartic is not established.
- Forced diuresis is not effective; hemodialysis is recommended where peak methanol levels exceed 50 mg/dL (this correlates with serum bicarbonate levels below 18 mEq/L)
- Ethanol, maintained at levels between 100 and 150 mg/dL, inhibits formation of toxic metabolites and may be indicated when peak
 methanol levels exceed 20 mg/dL. An intravenous solution of ethanol in D5W is optimal.
- Folate, as leucovarin, may increase the oxidative removal of formic acid. 4-methylpyrazole may be an effective adjunct in the treatment.
- Phenytoin may be preferable to diazepam for controlling seizure.

 $[Ellenhorn\ Barceloux:\ Medical\ Toxicology] BIOLOGICAL\ EXPOSURE\ INDEX\ -\ BEI$

sc-203739

Material Safety Data Sheet

The Power to Question

Hazard Alert Code Key:	EXTREME	HIGH	MODERATE	LOW
Determinant	Index	Sampling Tim	e Comn	nent
1. Methanol in urine	15 mg/l	End of shift	B, NS	
2. Formic acid in urine	80 mg/gm creatinine	Before the sh workweek	ift at end of B, NS	

B: Background levels occur in specimens collected from subjects NOT exposed.

NS: Non-specific determinant - observed following exposure to other materials.

	Section 5 - FIRE FIGHTING MEASURES
Vapour Pressure (mmHG):	Not applicable.
Upper Explosive Limit (%):	Not available.
Specific Gravity (water=1):	Not available
Lower Explosive Limit (%):	Not available.

EXTINGUISHING MEDIA

■ For SMALL FIRES:

Dry chemical, CO2, water spray or foam.

For LARGE FIRES:

Water-spray, fog or foam.

FIRE FIGHTING

- .
- Alert Emergency Responders and tell them location and nature of hazard.
- Wear breathing apparatus plus protective gloves.
- Prevent, by any means available, spillage from entering drains or water course.
- Fight fire from a safe distance, with adequate cover.
- If safe, switch off electrical equipment until vapor fire hazard removed.
- Use water delivered as a fine spray to control fire and cool adjacent area.
- Avoid spraying water onto liquid pools.
- DO NOT approach containers suspected to be hot.
- Cool fire exposed containers with water spray from a protected location.
- If safe to do so, remove containers from path of fire.

GENERAL FIRE HAZARDS/HAZARDOUS COMBUSTIBLE PRODUCTS

- Flammable solid which burns and propagates flame easily, even when partly wetted with water.
- Any source of ignition, i.e. friction, heat, sparks or flame, may cause fire or explosion.
- May burn fiercely
- May form explosive mixtures with air.
- May REIGNITE after fire is extinguished.
- Containers may explode on heating.
- Solids may melt and flow when heated or involved in a fire.
- Runoff may pollute waterways.
- Avoid generating dust, particularly clouds of dust in a confined or unventilated space as dusts may form an explosive mixture with air.
- Dry dust can be charged electrostatically by turbulence, pneumatic transport, pouring, in exhaust ducts and during transport, thereby providing a source of ignition.
- Decomposition products may be irritating, poisonous or corrosive.

Combustion products include: carbon dioxide (CO2), hydrogen chloride, phosgene, hydrogen iodide, nitrogen oxides (NOx), other pyrolysis products typical of burning organic material.

FIRE INCOMPATIBILITY

■ Avoid contamination with oxidizing agents i.e. nitrates, oxidizing acids,chlorine bleaches, pool chlorine etc. as ignition may result.

PERSONAL PROTECTION

Glasses:

Chemical goggles.

Gloves:

Respirator:

sc-203739

Material Safety Data Sheet

Hazard Alert Code Key: EXTREME HIGH MODERATE LOW

Type AX Filter of sufficient capacity

Section 6 - ACCIDENTAL RELEASE MEASURES

MINOR SPILLS

- Remove all ignition sources.
- DO NOT touch or walk through spilled material.
- Clean up all spills immediately.
- Avoid contact with skin and eyes.
- Prevent dust cloud.
- With clean shovel (preferably non-sparking) place material into clean, dry container and cover loosely.
- Move containers from spill area.
- · Control personal contact by using protective equipment.

MAJOR SPILLS

- Clear area of personnel and move upwind.
- Alert Emergency Responders and tell them location and nature of hazard.
- DO NOT touch or walk through spilled material.
- Control personal contact by using protective equipment.
- Prevent, by any means available, spillage from entering drains or water course.
- No smoking, naked lights or ignition sources.
- Increase ventilation.
- Stop leak if safe to do so.
- Contain or cover with sand, earth or vermiculite.
- Use only spark-free shovels and explosion proof equipment.
- Collect recoverable product into labeled containers for recycling.
- Collect solid residues and seal in labeled drums for disposal.
- Wash area with water and dike for later disposal; prevent runoff into drains.
- After clean up operations, decontaminate and launder all protective clothing and equipment before storing and re-using.
- If contamination of drains or waterways occurs, advise emergency services.

PROTECTIVE ACTIONS FOR SPILL

PROTECTIVE ACTION ZONE half evacuation downwind direction distance wind Isolation wind distance down) Distance direction half evacuation downwind direction distance INITIAL ISOLATION ZONE

From IERG (Canada/Australia)
Isolation Distance 25 meters
Downwind Protection Distance 250 meters

FOOTNOTES

1 PROTECTIVE ACTION ZONE is defined as the area in which people are at risk of harmful exposure. This zone assumes that random changes in wind direction confines the vapour plume to an area within 30 degrees on either side of the predominant wind direction, resulting in a crosswind protective action distance equal to the downwind protective action distance.

2 PROTECTIVE ACTIONS should be initiated to the extent possible, beginning with those closest to the spill and working away from the site in the downwind direction. Within the protective action zone a level of vapour concentration may exist resulting in nearly all unprotected persons becoming incapacitated and unable to take protective action and/or incurring serious or irreversible health effects.

3 INITIAL ISOLATION ZONE is determined as an area, including upwind of the incident, within which a high probability of localised wind reversal may expose nearly all persons without appropriate protection to life-threatening concentrations of the material.

sc-203739

Material Safety Data Sheet

The Power to Questio

Hazard Alert Code Key: EXTREME	HIGH	MODERATE	LOW
--------------------------------	------	----------	-----

4 SMALL SPILLS involve a leaking package of 200 litres (55 US gallons) or less, such as a drum (jerrican or box with inner containers). Larger packages leaking less than 200 litres and compressed gas leaking from a small cylinder are also considered "small spills". LARGE SPILLS involve many small leaking packages or a leaking package of greater than 200 litres, such as a cargo tank, portable tank or a "one-tonne" compressed gas cylinder.

5 Guide 133 is taken from the US DOT emergency response guide book.

6 IERG information is derived from CANUTEC - Transport Canada.

ACUTE EXPOSURE GUIDELINE LEVELS (AEGL) (in ppm)

AEGL 1: The airborne concentration of a substance above which it is predicted that the general population, including susceptible individuals, could experience notable discomfort, irritation, or certain asymptomatic nonsensory effects. However, the effects are not disabling and are transient and reversible upon cessation of exposure.

AEGL 2: The airborne concentration of a substance above which it is predicted that the general population, including susceptible individuals, could experience irreversible or other serious, long-lasting adverse health effects or an impaired ability to escape.

AEGL 3: The airborne concentration of a substance above which it is predicted that the general population, including susceptible individuals, could experience life-threatening health effects or death.

Section 7 - HANDLING AND STORAGE

PROCEDURE FOR HANDLING

- •
- Avoid all personal contact, including inhalation.
- Wear protective clothing when risk of overexposure occurs.
- Use in a well-ventilated area.
- Prevent concentration in hollows and sumps.
- DO NOT enter confined spaces until atmosphere has been checked.
- DO NOT allow material to contact humans, exposed food or food utensils.
- Avoid smoking, naked lights or ignition sources.
- When handling, DO NOT eat, drink or smoke.
- Avoid contact with incompatible materials.
- Keep containers securely sealed when not in used.
- Avoid physical damage to containers.
- Always wash hands with soap and water after handling.
- Working clothes should be laundered separately. Launder contaminated clothing before re-use.
- Use good occupational work practice.
- Observe manufacturer's storing/handling recommendations.
- Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions are maintained.

Empty containers may contain residual dust which has the potential to accumulate following settling. Such dusts may explode in the presence of an appropriate ignition source.

- Do NOT cut, drill, grind or weld such containers.
- In addition ensure such activity is not performed near full, partially empty or empty containers without appropriate workplace safety authorisation or permit.

RECOMMENDED STORAGE METHODS

Glass container.

For low viscosity materials and solids: Drums and jerricans must be of the non-removable head type. Where a can is to be used as an inner package, the can must have a screwed enclosure. For materials with a viscosity of at least 2680 cSt. (23 deg. C):

- · Removable head packaging and
- cans with friction closures may be used.

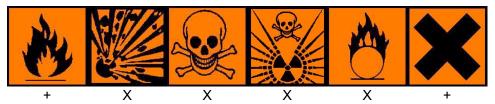
Where combination packages are used, there must be sufficient inert absorbent material to absorb completely any leakage that may occur, unless the outer packaging is a close fitting molded plastic box and the substances are not incompatible with the plastic. All combination packages for Packing group I and II must contain cushioning material.

STORAGE REQUIREMENTS

- FOR MINOR QUANTITIES:
- Store in an indoor fireproof cabinet or in a room of noncombustible construction

sc-203739

Material Safety Data Sheet



The Power to Question

Hazard Alert Code Key: EXTREME	HIGH	MODERATE	LOW	
--------------------------------	------	----------	-----	--

- Provide adequate portable fire-extinguishers in or near the storage area.
- FOR PACKAGE STORAGE:
- Store in original containers in approved flame-proof area.
- No smoking, naked lights, heat or ignition sources.
- DO NOT store in pits, depressions, basements or areas where vapors may be trapped.
- · Keep containers securely sealed.
- Store away from incompatible materials in a cool, dry well ventilated area.
- Protect containers against physical damage and check regularly for leaks.
- Protect containers from exposure to weather and from direct sunlight unless: (a) the packages are of metal or plastic construction; (b) the
 packages are securely closed are not opened for any purpose while in the area where they are stored and (c) adequate precautions are
 taken to ensure that rain water, which might become contaminated by the dangerous goods, is collected and disposed of safely.
- Ensure proper stock-control measures are maintained to prevent prolonged storage of dangerous goods.
- Observe manufacturer's storing and handling recommendations.

SAFE STORAGE WITH OTHER CLASSIFIED CHEMICALS

- X: Must not be stored together
- O: May be stored together with specific preventions
- +: May be stored together

Section 8 - EXPOSURE CONTROLS / PERSONAL PROTECTION

EXPOSURE CONTROLS

Source	Material	TWA ppm	TWA mg/m³	STEL ppm	STEL mg/m³	Peak ppm	Peak mg/m³	TWA F/CC	Notes
US - Oregon Permissible Exposure Limits (Z3)	iodonitrotetrazolium chloride (Inert or Nuisance Dust: (d) Total dust)		10						*
US OSHA Permissible Exposure Levels (PELs) - Table Z3	iodonitrotetrazolium chloride (Inert or Nuisance Dust: (d) Respirable fraction)		5						
US OSHA Permissible Exposure Levels (PELs) - Table Z3	iodonitrotetrazolium chloride (Inert or Nuisance Dust: (d) Total dust)		15						
US - Hawaii Air Contaminant Limits	iodonitrotetrazolium chloride (Particulates not other wise regulated - Total dust)		10						
US - Hawaii Air Contaminant Limits	iodonitrotetrazolium chloride (Particulates not other wise regulated - Respirable fraction)		5						
US - Oregon Permissible Exposure Limits (Z3)	iodonitrotetrazolium chloride (Inert or Nuisance Dust: (d) Respirable fraction)		5						*
US - Tennessee Occupational Exposure Limits - Limits For Air Contaminants	iodonitrotetrazolium chloride (Particulates not otherwise regulated Respirable fraction)		5						

sc-203739

Material Safety Data Sheet

Hazard Alert Code Key:	EXTREME	HIGH			MODE	RATE	LOW
US - Wyoming Toxic and Hazardous Substances Table Z1 Limits for Air Contaminants	iodonitrotetrazolium chloride (Particulates not otherwise regulated (PNOR)(f)- Respirable fraction)		5				
US - Michigan Exposure Limits for Air Contaminants	iodonitrotetrazolium chloride (Particulates not otherwise regulated, Respirable dust)		5				
Canada - British Columbia Occupational Exposure Limits	methanol (Methanol)	200		250			Skin
Canada - Ontario Occupational Exposure Limits	methanol (Methanol)	200	260	250	325		Skin
US - Minnesota Permissible Exposure Limits (PELs)	methanol (Methyl alcohol)	200	260	250	325		
US ACGIH Threshold Limit Values (TLV)	methanol (Methanol)	200		250			TLV Basis: headache; eye damage. BEI
US NIOSH Recommended Exposure Limits (RELs)	methanol (Methyl alcohol)	200	260	250	325		
Canada - Alberta Occupational Exposure Limits	methanol (Methanol (Methyl alcohol))	200	262	250	328		
US - Tennessee Occupational Exposure Limits - Limits For Air Contaminants	methanol (Methyl alcohol)	200	260	250	325		
US - Vermont Permissible Exposure Limits Table Z-1-A Transitional Limits for Air Contaminants	methanol (Methyl alcohol)	200	260				
US - Vermont Permissible Exposure Limits Table Z-1-A Final Rule Limits for Air Contaminants	methanol (Methyl alcohol)	200	260	250	310		
US - California Permissible Exposure Limits for Chemical Contaminants	methanol (Methyl alcohol; methanol)	200	260	250	325	1000	
US - Idaho - Limits for Air Contaminants	methanol (Methyl alcohol)	200	260				
US - Hawaii Air Contaminant Limits	methanol (Methyl alcohol (methanol))	200	260	250	325		
US - Alaska Limits for Air Contaminants	methanol (Methyl alcohol (Methanol))	200	260	250	310		
US - Michigan Exposure Limits for Air Contaminants	methanol (Methyl alcohol)	200	260	250	325		
Canada - Yukon Permissible Concentrations for Airborne Contaminant Substances	methanol (Methyl alcohol (methanol) - Skin)	200	260	250	310		
US - Washington Permissible exposure limits of air contaminants	methanol (Methanol (Methyl alcohol))	200		250			
Canada - Saskatchewan Occupational Health and Safety Regulations - Contamination Limits	methanol (Methyl alcohol (methanol))	200		250			Skin

sc-203739

Material Safety Data Sheet

The Power to Questi

Hazard Alert Code Key:	EXTREME	HIGH			MODERATE	LOW
US - Oregon Permissible Exposure Limits (Z1)	methanol (Methyl alcohol (methanol))	200	260			
US - Wyoming Toxic and Hazardous Substances Table Z1 Limits for Air Contaminants	methanol (Methyl alcohol)	200	260			
Canada - Quebec Permissible Exposure Values for Airborne Contaminants (English)	methanol (Methyl alcohol)	200	262	250	328	
US OSHA Permissible Exposure Levels (PELs) - Table Z1	methanol (Methyl alcohol)	200	260			
Canada - Northwest Territories Occupational Exposure Limits (English)	methanol (Methyl alcohol (Methanol) - Skin)	200	262	250	328	
Canada - Nova Scotia Occupational Exposure Limits	methanol (Methanol)	200		250		TLV Basis: headache; eye damage. BEI
Canada - Prince Edward Island Occupational Exposure Limits	methanol (Methanol)	200		250		TLV Basis: headache; eye damage. BEI
EMERGENCY EXPOSURE LIN	MITS					
Material Revised	IDLH Value (mg/m3)			Revis	sed IDLH Value (ppm)	
methanol				6,000)	

MATERIAL DATA

IODONITROTETRAZOLIUM CHLORIDE:

METHANOL:

■ For methanol:

Odour Threshold Value: 4.2-5960 ppm (detection), 53.0-8940 ppm (recognition)

NOTE: Detector tubes for methanol, measuring in excess of 50 ppm, are commercially available.

Exposure at or below the recommended TLV-TWA is thought to substantially reduce the significant risk of headache, blurred vision and other ocular and systemic effects.

Odour Safety Factor (OSF) OSF=2 (METHANOL).

PERSONAL PROTECTION

Consult your EHS staff for recommendations

EYE

- Safety glasses with side shields.
- Chemical goggles.
- Contact lenses pose a special hazard; soft lenses may absorb irritants and all lenses concentrate them. DO NOT wear contact lenses.

HANDS/FEET

- Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include: such as:
- frequency and duration of contact,
- chemical resistance of glove material,

sc-203739

Material Safety Data Sheet

The Power to Oscotion

Hazard Alert Code Key: EXTREME HIGH MODERATE LOW

- glove thickness and
- dexterity

Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739).

- When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374) is recommended.
- When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374) is recommended.
- · Contaminated gloves should be replaced.

Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.

Wear physical protective gloves, eg. leather.

Wear safety footwear.

OTHER

- Overalls.
- · Eyewash unit.
- Barrier cream.
- Skin cleansing cream.
- Some plastic personal protective equipment (PPE) (e.g. gloves, aprons, overshoes) are not recommended as they may produce static electricity.
- For large scale or continuous use wear tight-weave non-static clothing (no metallic fasteners, cuffs or pockets), non sparking safety footwear
- .
- Respirators may be necessary when engineering and administrative controls do not adequately prevent exposures.
- The decision to use respiratory protection should be based on professional judgment that takes into account toxicity information, exposure measurement data, and frequency and likelihood of the worker's exposure - ensure users are not subject to high thermal loads which may result in heat stress or distress due to personal protective equipment (powered, positive flow, full face apparatus may be an option).
- Published occupational exposure limits, where they exist, will assist in determining the adequacy of the selected respiratory. These may
 be government mandated or vendor recommended.
- Certified respirators will be useful for protecting workers from inhalation of particulates when properly selected and fit tested as part of a
 complete respiratory protection program.
- Use approved positive flow mask if significant quantities of dust becomes airborne.
- Try to avoid creating dust conditions.

RESPIRATOR

■ Selection of the Class and Type of respirator will depend upon the level of breathing zone contaminant and the chemical nature of the contaminant. Protection Factors (defined as the ratio of contaminant outside and inside the mask) may also be important.

		· · · · · · · · · · · · · · · · · · ·	
Breathing Zone Level ppm (volume)	Maximum Protection Factor	Half-face Respirator	Full-Face Respirator
1000	10	AX-1	-
1000	50	-	AX-1
5000	50	Airline*	-
5000	100	-	AX-2
10000	100	-	AX-3
	100+		Airline* *

^{* -} Continuous Flow ** - Continuous-flow or positive pressure demand.

The local concentration of material, quantity and conditions of use determine the type of personal protective equipment required.

Use appropriate NIOSH-certified respirator based on informed professional judgement. In conditions where no reasonable estimate of exposure can be made, assume the exposure is in a concentration IDLH and use NIOSH-certified full face pressure demand SCBA with a minimum service life of 30 minutes, or a combination full facepiece pressure demand SAR with auxiliary self-contained air supply. Respirators provided only for escape from IDLH atmospheres shall be NIOSH-certified for escape from the atmosphere in which they will be used.

ENGINEERING CONTROLS

- For large scale or continuous use:
- · Spark-free, earthed ventilation system, venting directly to the outside and separate from usual ventilation systems
- Provide dust collectors with explosion vents
- Local exhaust ventilation is required where solids are handled as powders or crystals; even when particulates are relatively large, a
 certain proportion will be powdered by mutual friction.
- Exhaust ventilation should be designed to prevent accumulation and recirculation of particulates in the workplace.

sc-203739

Material Safety Data Sheet

Hazard Alert Code Key: EXTREME	HIGH	MODERATE	LOW
--------------------------------	------	----------	-----

- If in spite of local exhaust an adverse concentration of the substance in air could occur, respiratory protection should be considered. Such protection might consist of:
- (a): particle dust respirators, if necessary, combined with an absorption cartridge;
- (b): filter respirators with absorption cartridge or canister of the right type;
- (c): fresh-air hoods or masks
- Build-up of electrostatic charge on the dust particle, may be prevented by bonding and grounding.
- · Powder handling equipment such as dust collectors, dryers and mills may require additional protection measures such as explosion ventina.

Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to efficiently remove the contaminant.

Type of Contaminant: Air Speed:

direct spray, spray painting in shallow booths, drum filling, conveyer loading, crusher dusts, gas discharge (active generation into zone of 1-2.5 m/s (200-500 f/min.) rapid air motion)

grinding, abrasive blasting, tumbling, high speed wheel generated dusts (released at high initial velocity into zone of very high rapid air 2.5-10 m/s (500-2000 f/min.)

Within each range the appropriate value depends on:

3 · · · · · · · · · · · · · · · · · · ·	
Lower end of the range	Upper end of the range
1: Room air currents minimal or favorable to capture	1: Disturbing room air currents
2: Contaminants of low toxicity or of nuisance value only	2: Contaminants of high toxicity
3: Intermittent, low production.	3: High production, heavy use
4: Large hood or large air mass in motion	4: Small hood-local control only

Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 4-10 m/s (800-2000 f/min) for extraction of crusher dusts generated 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used.

Section 9 - PHYSICAL AND CHEMICAL PROPERTIES

PHYSICAL PROPERTIES

Mixes with water.

motion).

State	DIVIDED SOLID	Molecular Weight	505.7
Melting Range (°F)	447.8 (decomp)	Viscosity	Not Applicable
Boiling Range (°F)	Not applicable.	Solubility in water (g/L)	Miscible
Flash Point (°F)	Not Available	pH (1% solution)	Not available
Decomposition Temp (°F)	447.8	pH (as supplied)	Not applicable
Autoignition Temp (°F)	Not available.	Vapour Pressure (mmHG)	Not applicable.
Upper Explosive Limit (%)	Not available.	Specific Gravity (water=1)	Not available
Lower Explosive Limit (%)	Not available.	Relative Vapor Density (air=1)	Not applicable.
Volatile Component (%vol)	Not applicable.	Evaporation Rate	Not applicable

APPEARANCE

Light yellow powder; mixes with water.

Section 10 - CHEMICAL STABILITY

CONDITIONS CONTRIBUTING TO INSTABILITY

sc-203739

Material Safety Data Sheet

-

Hazard Alert Code Key: EXTREME HIGH MODERATE LOW

- Presence of incompatible materials.
- Product is considered stable.
- Hazardous polymerization will not occur.

STORAGE INCOMPATIBILITY

■ High nitrogen compounds are often unstable or explosive; the tendency is exaggerated by attachment of azide or diazonium groups, or a high-nitrogen heterocyclic nucleus.

High-nitrogen chemical families include

- azides
- diazoazoles
- diazonium salts
- hvdrazinium salts
- N-nitro compounds
- tetrazoles
- triazenes
- triazoles

Avoid reaction with oxidizing agents.

 There is a wide variation in thermal stability in derivatives of tetrazole (which contains a high-nitrogen nucleus) and several show explosive properties.

For incompatible materials - refer to Section 7 - Handling and Storage.

Section 11 - TOXICOLOGICAL INFORMATION

iodonitrotetrazolium chloride

TOXICITY AND IRRITATION

- unless otherwise specified data extracted from RTECS Register of Toxic Effects of Chemical Substances.
- Asthma-like symptoms may continue for months or even years after exposure to the material ceases. This may be due to a non-allergenic condition known as reactive airways dysfunction syndrome (RADS) which can occur following exposure to high levels of highly irritating compound. Key criteria for the diagnosis of RADS include the absence of preceding respiratory disease, in a non-atopic individual, with abrupt onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the irritant. A reversible airflow pattern, on spirometry, with the presence of moderate to severe bronchial hyperreactivity on methacholine challenge testing and the lack of minimal lymphocytic inflammation, without eosinophilia, have also been included in the criteria for diagnosis of RADS. RADS (or asthma) following an irritating inhalation is an infrequent disorder with rates related to the concentration of and duration of exposure to the irritating substance. Industrial bronchitis, on the other hand, is a disorder that occurs as result of exposure due to high concentrations of irritating substance (often particulate in nature) and is completely reversible after exposure ceases. The disorder is characterised by dyspnea, cough and mucus production.

No significant acute toxicological data identified in literature search.

METHANOL:

■ unless otherwise specified data extracted from RTECS - Register of Toxic Effects of Chemical Substances.

TOXICITY	IRRITATION
Oral (human) LDLo: 143 mg/kg	Skin (rabbit): 20 mg/24 h-Moderate
Oral (man) LDLo: 6422 mg/kg	Eye (rabbit): 40 mg-Moderate
Oral (man) TDLo: 3429 mg/kg	Eye (rabbit): 100 mg/24h-Moderate
Oral (rat) LD50: 5628 mg/kg	
Inhalation (human) TCLo: 86000 mg/m³	
Inhalation (human) TCLo: 300 ppm	
Inhalation (rat) LC50: 64000 ppm/4h	
Dermal (rabbit) LD50: 15800 mg/kg	

■ The material may cause skin irritation after prolonged or repeated exposure and may produce on contact skin redness, swelling, the production of vesicles, scaling and thickening of the skin.

sc-203739

Material Safety Data Sheet

The Power to Questio

Hazard Al	lert Code Key:	EXTREME	HIGH	MODERATE	LOW	
SKIN						
methanol (Canada - Ontario	Occupational Exposure Lin	nits - Skin		Notes	Skin
methanol l	JS AIHA Workpla	ce Environmental Exposure	e Levels (WEELs) - Skin		Notes	Skin
methanol l	JS NIOSH Recor	nmended Exposure Limits (RELs) - Skin		Skin	Yes
methanol (Canada - Quebec	Permissible Exposure Valu	ues for Airborne Contaminant	s - Skin (French)	Notes	Skin
methanol l	JS - Tennessee C	Occupational Exposure Limi	ts - Limits For Air Contamina	nts - Skin	Skin Designation	Χ
methanol l	JS - Vermont Per	missible Exposure Limits Ta	able Z-1-A Final Rule Limits for	or Air Contaminants - Skin	Skin Designation	Χ
methanol l	JS - Washington	Permissible exposure limits	of air contaminants - Skin		Skin	Χ
methanol l	JS ACGIH Thres	hold Limit Values (TLV) - Sk	in		Skin Designation	Yes
methanol (Canada - British (Columbia Occupational Exp	osure Limits - Skin		Notation	Skin
methanol l	JS - Minnesota P	ermissible Exposure Limits	(PELs) - Skin		Skin Designation	Χ
methanol l	JS - Hawaii Air C	ontaminant Limits - Skin De	esignation		Skin Designation	Χ
methanol N	ND				Skin Designation	Χ
methanol l	JS OSHA Permis	sible Exposure Levels (PEL	s) - Skin		Skin Designation	Χ
methanol l	JS - California Pe	ermissible Exposure Limits f	or Chemical Contaminants -	Skin	Skin	Χ
methanol l	JS - California Pe	ermissible Exposure Limits f	or Chemical Contaminants -	Skin	Skin	S
methanol (Canada - Alberta	Occupational Exposure Lim	nits - Skin		Substance Interaction	1

Section 12 - ECOLOGICAL INFORMATION

Refer to data for ingredients, which follows: METHANOL:

IODONITROTETRAZOLIUM CHLORIDE:

■ DO NOT discharge into sewer or waterways. IODONITROTETRAZOLIUM CHLORIDE:

METHANOL:

■ For methanol:

log Kow : -0.82- -0.66 Half-life (hr) air : 427

Half-life (hr) H2O surface water : 5.3-64 Henry's atm m3 /mol: 1.35E-04

BOD 5 0.76-1.12 COD: 1.05-1.50, 99%

ThOD: 1.5 BCF: 0.2-10 Environmental Fate

TERRESTRIAL FATE: An estimated Koc value of 1 indicates that methanol is expected to have very high mobility in soil. Volatilisation of methanol from moist soil surfaces is expected to be an important fate process given a Henry's Law constant of 4.55x10-6 atm-cu m/mole. The potential for volatilisation of methanol from dry soil surfaces may exist based upon a vapor pressure of 127 mm Hg. Biodegradation is expected to be an important fate process for methanol based on half-lives of 1 and 3.2 days measured in a sandy silt loam and sandy loam from Texas and Mississippi, respectively.

AQUATIC FATE: The estimated Koc indicates that methanol is not expected to adsorb to suspended solids and sediment. Volatilization from water surfaces is expected based upon a Henry's Law constant Using this Henry's Law constant estimated volatilisation half-lives for a model river and model lake are 3 and 35 days, respectively. A BCF of less than 10 measured in fish, suggests bioconcentration in aquatic organisms is low. Hydrolysis and photolysis in sunlit surface waters is not expected to be an important environmental fate process for methanol since this compound lacks functional groups that hydrolyse or absorb light under environmentally relevant conditions. Methanol has been shown to undergo rapid biodegradation in a variety of screening studies using sewage seed and activated sludge inoculum, which suggests that biodegradation will occur in aquatic environments.

ATMOSPHERIC FATE: According to a model of gas/particle partitioning of semivolatile organic compounds in the atmosphere and vapour pressure, methanol is expected to exist solely as a vapor in the ambient atmosphere. Vapour-phase methanol is degraded in the atmosphere by reaction with photochemically-produced hydroxyl radicals(SRC); the half-life for this reaction in air is estimated to be 17 days, calculated from its rate constant of 9.4x10-13 cu cm/molecule-sec at 25 deg C Ecotoxicity:

sc-203739

Material Safety Data Sheet

The Power in Quantie

Hazard Alert Code Key:	EXTREME	HIGH	MODERATE	LOW
------------------------	---------	------	----------	-----

Fish LC50 (96 h) fathead minnow (Pimephales promelus) 29000 mg/l; rainbow trout (Oncorhyncus mykiss) 19000 mg/l; bluegill (Lepomis macrochirus) 15400 mg/l

Fish LC50 (7 d): guppy 10860 mg/l (14 d): 11.5 mg/l (semistatic)

Daphnia pulex LC50 (18 h): 19500 mg/l

Brine shrimp (Artemia salina) LC50 24 h): 1101.46-1578.84 mg/l (static) Brown shrimp (Crangon crangon) LC50 (96 h): 1340 mg/l (semistatic)

Mussel (Mytilus edulis) LC50 (96 h): 15900 mg/l

Marine bacterium (Photobacterium posphoreum) LC50 (4 h): 7690 mg/l

Protozoa (Tetrahymena pyriformis) LC50 (48 h) 18756 mg/l.

Ecotoxicity

Ingredient Persistence: Water/Soil Persistence: Air Bioaccumulation Mobility iodonitrotetrazolium chloride HIGH LOW LOW LOW LOW LOW LOW HIGH

Section 13 - DISPOSAL CONSIDERATIONS

US EPA Waste Number & Descriptions

A. General Product Information

Ignitability characteristic: use EPA hazardous waste number D001 (waste code I)

B. Component Waste Numbers

When methanol is present as a solid waste as a discarded commercial chemical product, off-specification species, as a container residue, or a spill residue, use EPA waste number U154 (waste code I).

Disposal Instructions

All waste must be handled in accordance with local, state and federal regulations.

| Puncture containers to prevent re-use and bury at an authorized landfill.

Legislation addressing waste disposal requirements may differ by country, state and/ or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked.

A Hierarchy of Controls seems to be common - the user should investigate:

- Reduction
- Reuse
- Recycling
- Disposal (if all else fails)

This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. Shelf life considerations should also be applied in making decisions of this type. Note that properties of a material may change in use, and recycling or reuse may not always be appropriate.

DO NOT allow wash water from cleaning equipment to enter drains. Collect all wash water for treatment before disposal.

- Recycle wherever possible.
- Consult manufacturer for recycling options or consult Waste Management Authority for disposal if no suitable treatment or disposal facility
 can be identified
- Dispose of by: Burial in a licensed land-fill or Incineration in a licensed apparatus (after admixture with suitable combustible material)
- Decontaminate empty containers. Observe all label safeguards until containers are cleaned and destroyed.

Section 14 - TRANSPORTATION INFORMATION

DOT:

Symbols:	None	Hazard class or Division:	4.1
Identification Numbers:	UN1325	PG:	III
Label Codes:	4.1	Special provisions:	A1, IB8, IP3, T1, TP33

sc-203739

Material Safety Data Sheet

The Power to Ownto

Hazard Alert Code Key:	EXTREME	HIGH	MODERATE	LOW		
Packaging: Exceptions:	151	Packaging: N	on-bulk: 213			
Packaging: Exceptions:	151	Quantity limita aircraft/rail:	ations: Passenger 25 kg			
Quantity Limitations: Cargo aircraft only:	100 kg	Vessel stowa	ge: Location: B			
Vessel stowage: Other:	None					
Hazardous materials descriptions and proper shipping names: Flammable solids, organic, n.o.s. Air Transport IATA:						
ICAO/IATA Class:	4.1	ICAO/IATA Su	ıbrisk: None			
UN/ID Number:	1325	Packing Grou	p: III			
Special provisions:	A3					
Shipping Name: FLAMMABLE SOLID, ORGANIC, N.O.S. *(CONTAINS IODONITROTETRAZOLIUM CHLORIDE) Maritime Transport IMDG:						
IMDG Class:	4.1	IMDG Subrisk	c: None			
UN Number:	1325	Packing Grou	p: III			
EMS Number:	F-A,S-G	Special provis	sions: 223 2	74 915 944		
Limited Quantities:	5 ka					

Section 15 - REGULATORY INFORMATION

iodonitrotetrazolium chloride (CAS: 146-68-9) is found on the following regulatory lists;

"Canada Domestic Substances List (DSL)", "US Toxic Substances Control Act (TSCA) - Inventory" Regulations for ingredients

Shipping Name: FLAMMABLE SOLID, ORGANIC, N.O.S.(contains iodonitrotetrazolium chloride)

methanol (CAS: 67-56-1) is found on the following regulatory lists;

"Canada - Alberta Ambient Air Quality Objectives", "Canada - Alberta Occupational Exposure Limits", "Canada - British Columbia Occupational Exposure Limits", "Canada - Northwest Territories Occupational Exposure Limits (English)", "Canada - Nova Scotia Occupational Exposure Limits", "Canada - Ontario Occupational Exposure Limits", "Canada - Prince Edward Island Occupational Exposure Limits", "Canada Quebec Permissible Exposure Values for Airborne Contaminants (English)","Canada - Saskatchewan Industrial Hazardous Substances", "Canada - Saskatchewan Occupational Health and Safety Regulations - Contamination Limits", "Canada - Yukon Permissible Concentrations for Airborne Contaminant Substances", "Canada Domestic Substances List (DSL)", "Canada Ingredient Disclosure List (SOR/88-64)", "Canada National Pollutant Release Inventory (NPRI)", "Canada Toxicological Index Service - Workplace Hazardous Materials Information System - WHMIS (English)", "Canada Toxicological Index Service - Workplace Hazardous Materials Information System - WHMIS (French)", "GESAMP/EHS Composite List - GESAMP Hazard Profiles", "IMO IBC Code Chapter 17: Summary of minimum requirements","IMO MARPOL 73/78 (Annex II) - List of Other Liquid Substances","International Council of Chemical Associations (ICCA) -High Production Volume List", "OECD Representative List of High Production Volume (HPV) Chemicals", "US - Alaska Limits for Air Contaminants","US - California Air Toxics ""Hot Spots"" List (Assembly Bill 2588) Substances for which emissions must be quantified","US -California Occupational Safety and Health Regulations (CAL/OSHA) - Hazardous Substances List", "US - California OEHHA/ARB - Acute Reference Exposure Levels and Target Organs (RELs)", "US - California OEHHA/ARB - Chronic Reference Exposure Levels and Target Organs (CRELs)","US - California Permissible Exposure Limits for Chemical Contaminants","US - California Toxic Air Contaminant List Category II", "US - Connecticut Hazardous Air Pollutants", "US - Hawaii Air Contaminant Limits", "US - Idaho - Limits for Air Contaminants", "US - Maine Chemicals of High Concern List", "US - Massachusetts Oil & Hazardous Material List", "US - Michigan Exposure Limits for Air Contaminants", "US - Minnesota Hazardous Substance List", "US - Minnesota Permissible Exposure Limits (PELs)", "US - New Jersey Right to Know Hazardous Substances", "US - Oregon Permissible Exposure Limits (Z1)", "US - Rhode Island Hazardous Substance List", "US -Tennessee Occupational Exposure Limits - Limits For Air Contaminants", "US - Vermont Hazardous wastes which are Discarded Commercial Chemical Products or Off-Specification Batches of Commercial Chemical Products or Spill Residues of Either", "US - Vermont Permissible Exposure Limits Table Z-1-A Final Rule Limits for Air Contaminants", "US - Vermont Permissible Exposure Limits Table Z-1-A Transitional Limits for Air Contaminants", "US - Washington Discarded Chemical Products List - ""U"" Chemical Products", "US - Washington Permissible exposure limits of air contaminants", "US - Wyoming Toxic and Hazardous Substances Table Z1 Limits for Air Contaminants", "US ACGIH Threshold Limit Values (TLV)","US CAA (Clean Air Act) - HON Rule - Organic HAPs (Hazardous Air Pollutants)","US Clean Air Act -Hazardous Air Pollutants", "US Cosmetic Ingredient Review (CIR) Cosmetic ingredients found safe, with qualifications", "US Department of Transportation (DOT) List of Hazardous Substances and Reportable Quantities - Hazardous Substances Other Than Radionuclides","US DOE Temporary Emergency Exposure Limits (TEELs)","US DOT Coast Guard Bulk Hazardous Materials - List of Flammable and

sc-203739

Material Safety Data Sheet

The Power to Oscotion

Hazard Alert Code Key: EXTREME HIGH MODERATE LOW

Combustible Bulk Liquid Cargoes", "US EPA Acute Exposure Guideline Levels (AEGLs) - Interim", "US EPA High Production Volume Program Chemical List", "US EPCRA Section 313 Chemical List", "US FDA Indirect Food Additives: Adhesives and Components of Coatings - Substances for Use Only as Components of Adhesives - Adhesives", "US Food Additive Database", "US List of Lists - Consolidated List of Chemicals Subject to the Emergency Planning and Community Right-to-Know Act (EPCRA) and Section 112(r) of the Clean Air Act", "US NFPA 30A Typical Flammable and Combustible Liquids Found at Motor Fuel Dispensing Facilities", "US NFPA 30B Manufacture and Storage of Aerosol Products - Chemical Heat of Combustion", "US NIOSH Recommended Exposure Limits (RELs)", "US OSHA Permissible Exposure Levels (PELs) - Table Z1", "US Postal Service (USPS) Hazardous Materials Table: Postal Service Mailability Guide", "US RCRA (Resource Conservation & Recovery Act) - List of Hazardous Wastes", "US RCRA (Resource Conservation & Recovery Act) - Phase 4 LDR Rule - Universal Treatment Standards", "US Spacecraft Maximum Allowable Concentrations (SMACs) for Airborne Contaminants", "US Toxic Substances Control Act (TSCA) - Inventory"

Section 16 - OTHER INFORMATION

LIMITED EVIDENCE

- Cumulative effects may result following exposure*.
- Vapors potentially cause drowsiness and dizziness*.
- * (limited evidence).

REPRODUCTIVE HEALTH GUIDELINES

■ Established occupational exposure limits frequently do not take into consideration reproductive end points that are clearly below the thresholds for other toxic effects. Occupational reproductive guidelines (ORGs) have been suggested as an additional standard. These have been established after a literature search for reproductive no-observed-adverse effect-level (NOAEL) and the lowest-observed-adverse-effect-level (LOAEL). In addition the US EPA's procedures for risk assessment for hazard identification and dose-response assessment as applied by NIOSH were used in the creation of such limits. Uncertainty factors (UFs) have also been incorporated.

Ingredient ORG UF Endpoint CR Adeq TLV methanol 262 mg/m3 NA NA NA NA Yes

■ These exposure guidelines have been derived from a screening level of risk assessment and should not be construed as unequivocally safe limits. ORGS represent an 8-hour time-weighted average unless specified otherwise. CR = Cancer Risk/10000; UF = Uncertainty factor: TLV believed to be adequate to protect reproductive health: LOD: Limit of detection Toxic endpoints have also been identified as: D = Developmental; R = Reproductive; TC = Transplacental carcinogen Jankovic J., Drake F.: A Screening Method for Occupational Reproductive Health Risk: American Industrial Hygiene Association Journal 57: 641-649 (1996).

Reasonable care has been taken in the preparation of this information, but the author makes no warranty of merchantability or any other warranty, expressed or implied, with respect to this information. The author makes no representations and assumes no liability for any direct, incidental or consequential damages resulting from its use. For additional technical information please call our toxicology department on +800 CHEMCALL.

- Classification of the mixture and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references.

 A list of reference resources used to assist the committee may be found at: www.chemwatch.net/references.
- The (M)SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

This document is copyright. Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH. TEL (+61 3) 9572 4700.

Issue Date: Mar-7-2010 Print Date: May-7-2010