Pirenzepine Dihydrochloride

sc-204197

Material Safety Data Sheet

Hazard Alert Code Key:

EXTREME

HIGH

MODERATE

LOW

Section 1 - CHEMICAL PRODUCT AND COMPANY IDENTIFICATION

PRODUCT NAME

Pirenzepine Dihydrochloride

STATEMENT OF HAZARDOUS NATURE

CONSIDERED A HAZARDOUS SUBSTANCE ACCORDING TO OSHA 29 CFR 1910.1200.

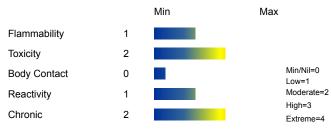
NFPA

SUPPLIER

Santa Cruz Biotechnology, Inc. 2145 Delaware Avenue Santa Cruz, California 95060 800.457.3801 or 831.457.3800

EMERGENCY

ChemWatch


Within the US & Canada: 877-715-9305 Outside the US & Canada: +800 2436 2255 (1-800-CHEMCALL) or call +613 9573 3112

SYNONYMS

C19-H21-N5-O2.2HCl, LS-519-CL-2, "LS519 hydrochloride", "5, 11-dihydro-11-(4-methylpiperazin-1-ylacetyl)pyrido[2, 3-b][1, 4]-", dihydrochloride", "6H-pyrido[2, "benzodiazepin-6-one 3-b](1, 4)benzodiazepin-6-one, 5, 11-dihydro-11-[(4-methyl-", "1-piperazinyl)acetyl]-, dihydrochloride", Acilec, Duogastral, Durapirenz, Gasteril, Gastricur, Gastri-P, Gastrol, Gastropiren, Gastrosed, Gastrozepine, Gastrozepin, Indone, Leblon, Lulcus, Maghen, Renzepin, Tabe, Ulcin, Ulcopir, Ulcoprotect, Ulcosafe, Ulcosan, Ulcosyntex, Ulcuforton, Ulgescum, Ulpir, "gastrointestinal agent/ antiulcerative", "tricyclic gastric acid inhibitor/ antimuscarinic"

Section 2 - HAZARDS IDENTIFICATION

CHEMWATCH HAZARD RATINGS

CANADIAN WHMIS SYMBOLS

POTENTIAL HEALTH EFFECTS ACUTE HEALTH EFFECTS

SWALLOWED

- Accidental ingestion of the material may be damaging to the health of the individual.
- Side effects of tricyclic antidepressants include dry mouth, sour or metallic taste, constipation, retention of urine, blurred vision and changes in focusing, palpitations, and fast heart beat. Gastrointestinal disturbances (including nausea and vomiting), drowsiness, tremor, low blood pressure when standing, dizziness, sweating, weakness and fatigue, inco-ordination, epilepsy-like seizures, and speech difficulties may occur. Allergic skin reactions and sensitivity to light have been reported, as well as jaundice and blood disorders. Effects on the heart muscle may produce conduction defects and irregularities in heart beat. Endocrine effects may produce changes in sex drive, impotence, enlarged breasts and copious milk production. Changes in blood sugar levels and reduced levels of antidiuretic hormone may also occur. Overdose may produce excitement and restlessness with dry mouth, dilated pupils, increased heart rate, retention of urine and absence of bowel sounds. More severe poisoning may produce convulsions and muscle spasms, low blood pressure and depression of breathing and the heart. There may be life-threatening heartbeat irregularities occurring some days after apparent recovery.
- Patients with Major Depressive Disorder may experience worsening of their depression and suicidal ideation even on medication until significant remission occurs. The association between the antidepressant drugs and worsening of symptoms are yet inconclusive. As such, patients (adults and children) should be closely monitored both at the beginning of therapy and its withdrawal to avoid symptoms such as anxiety, agitation, panic attacks, sleeplessness, irritability, hostility, impulsivity, psychomotor restlessness, hypomania and mania. In any case, medication should be tapered not administered or withdrawn abruptly. Because of the possibility of co-morbidity between major depressive disorder, bipolar disorder, other psychiatric and non-psychiatric disorders, it is advised that similar precautions be applied in their management also.
- Muscarine-like drugs activate muscarinic receptors, affecting both peripheral and central nervous systems. Muscarinic symptoms include miosis, dilation of blood vessels, depressed heart output and conduction, phlegm, diarrhoea, vomiting, urination and sweating. Atropine and tubocurarine block muscarinic effects.

EYE

■ Although the material is not thought to be an irritant (as classified by EC Directives), direct contact with the eye may cause transient discomfort characterized by tearing or conjunctival redness (as with windburn). Slight abrasive damage may also result. The material may produce foreign body irritation in certain individuals.

SKIN

- The material is not thought to produce adverse health effects or skin irritation following contact (as classified by EC Directives using animal models). Nevertheless, good hygiene practice requires that exposure be kept to a minimum and that suitable gloves be used in an occupational setting
- Open cuts, abraded or irritated skin should not be exposed to this material.
- Entry into the blood-stream, through, for example, cuts, abrasions or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected.

INHALED

- The material is not thought to produce either adverse health effects or irritation of the respiratory tract following inhalation (as classified by EC Directives using animal models). Nevertheless, adverse systemic effects have been produced following exposure of animals by at least one other route and good hygiene practice requires that exposure be kept to a minimum and that suitable control measures be used in an occupational setting.
- Persons with impaired respiratory function, airway diseases and conditions such as emphysema or chronic bronchitis, may incur further disability if excessive concentrations of particulate are inhaled.

If prior damage to the circulatory or nervous systems has occurred or if kidney damage has been sustained, proper screenings should be conducted on individuals who may be exposed to further risk if handling and use of the material result in excessive exposures.

CHRONIC HEALTH EFFECTS

■ Substance accumulation, in the human body, may occur and may cause some concern following repeated or long-term occupational exposure.

Prolonged exposure to anticholinergic agents may irritate the eyes, causing allergic lid reactions, conjunctivitis, swelling, excess blood flow to the eyes, and sensitivity to light. Increase in eye pressure may lead to closed angle glaucoma. There may be hypersensitivity shown by conjunctivitis, rash and eczema. Anticholinergics can also cause chronic constipation with blockage of the intestine by faeces.

Section 3 - COMPOSITION / INFORMATION ON INGREDIENTS					
NAME	CAS RN	%			
pirenzepine dihydrochloride	29868-97-1	>98			

Section 4 - FIRST AID MEASURES

SWALLOWED

- If swallowed do NOT induce vomiting.
- If vomiting occurs, lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration.
- Observe the patient carefully.
- Never give liquid to a person showing signs of being sleepy or with reduced awareness; i.e. becoming unconscious.
- Give water to rinse out mouth, then provide liquid slowly and as much as casualty can comfortably drink.
- Seek medical advice.

EYE

If this product comes in contact with the eyes

- Wash out immediately with fresh running water.
- Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the
 upper and lower lids.
- Seek medical attention without delay; if pain persists or recurs seek medical attention.
- Removal of contact lenses after an eye injury should only be undertaken by skilled personnel.

SKIN

If skin or hair contact occurs

- Flush skin and hair with running water (and soap if available).
- Seek medical attention in event of irritation.

INHALED

- If dust is inhaled, remove from contaminated area.
- Encourage patient to blow nose to ensure clear passage of breathing.
- If irritation or discomfort persists seek medical attention.

NOTES TO PHYSICIAN

- Treatment regime for atropine intoxication (and for other anticholinergics)
- Empty the stomach by aspiration and lavage.
- The use of charcoal to prevent absorption, followed by lavage has been suggested.
- Give a purgative such as 30 gm sodium sulfate in 250 ml H2O.
- Excitement may be controlled by diazepam or other short acting barbiturates.
- Supportive therapy may require oxygen and assisted respiration, ice-bags or alcohol sponges for hyperpyrexia, especially in children, bladder catheterisation and the administration of fluids.

MARTINDALE The Extra Pharmacopoeia 29th Edition.

 Physostigmine salicylate (1-2 mg) subcutaneously or intravenously has been shown to reverse CNS symptoms of anticholinergic intoxication*.

* Merck, Sharp and Dohme MSDS

- Physostigmine is the only reversible acetylcholinesterase inhibitor capable of directly antagonising the CNS manifestations of anticholinergic toxicity; it is an uncharged tertiary amine that efficiently crosses the blood brain barrier
- Most patients can be treated safely without physostigmine, but it is recommended for use when at least one of the following
 aberrations are present tachydysrhythmias with subsequent haemodynamic compromise, intractable seizures, or severe agitation or
 psychosis (in which the patient is considered a threat to self or others).
- Although some recommend the use of benzodiazepines (such as diazepam) as first-line agents for the control of agitation associated
 with the anticholinergic syndrome, one study suggests that physostigmine is significantly more effective and no less safe for use in
 this setting. Physostigmine is contraindicated in patients with cardiac conduction disturbances (prolonged PR and QRS intervals) on
 ECG analysis.

NOTE Following overdosage, a curare-like action may occur, i.e., neuromuscular blockade leading to muscular weakness and possible paralysis. In the event of a curare-like effect on respiratory muscles, artificial respiration should be instituted and maintained until effective respiratory action returns.

About 90% of the oral dose is excreted in the faeces unchanged. Pirenzepine has an elimination half-life of about 12 hours and is only slightly bound to plasma protein.

Section 5 - FIRE FIGHTING MEASURES				
Vapor Pressure (mmHG)	Negligible			
Upper Explosive Limit (%)	Not available.			
Specific Gravity (water=1)	Not available			
Lower Explosive Limit (%)	Not available			

EXTINGUISHING MEDIA

Water spray or fog.

- Foam.
- Dry chemical powder.
- BCF (where regulations permit).
- Carbon dioxide.

FIRE FIGHTING

- Alert Fire Brigade and tell them location and nature of hazard.
- Wear breathing apparatus plus protective gloves.
- Prevent, by any means available, spillage from entering drains or water courses.
- Use water delivered as a fine spray to control fire and cool adjacent area.
- DO NOT approach containers suspected to be hot.
- Cool fire exposed containers with water spray from a protected location.
- If safe to do so, remove containers from path of fire.
- Equipment should be thoroughly decontaminated after use.

GENERAL FIRE HAZARDS/HAZARDOUS COMBUSTIBLE PRODUCTS

- Combustible solid which burns but propagates flame with difficulty; it is estimated that most organic dusts are combustible (circa 70%) according to the circumstances under which the combustion process occurs, such materials may cause fires and / or dust explosions.
- Avoid generating dust, particularly clouds of dust in a confined or unventilated space as dusts may form an explosive mixture with air, and any source of ignition, i.e. flame or spark, will cause fire or explosion. Dust clouds generated by the fine grinding of the solid are a particular hazard; accumulations of fine dust (420 micron or less) may burn rapidly and fiercely if ignited particles exceeding this limit will generally not form flammable dust clouds.; once initiated, however, larger particles up to 1400 microns diameter will contribute to the propagation of an explosion.
- In the same way as gases and vapors, dusts in the form of a cloud are only ignitable over a range of concentrations; in principle, the concepts of lower explosive limit (LEL) and upper explosive limit (UEL) are applicable to dust clouds but only the LEL is of practical use; this is because of the inherent difficulty of achieving homogeneous dust clouds at high temperatures (for dusts the LEL is often called the "Minimum Explosible Concentration", MEC)
- A dust explosion may release of large quantities of gaseous products; this in turn creates a subsequent pressure rise of explosive force capable of damaging plant and buildings and injuring people.
- Usually the initial or primary explosion takes place in a confined space such as plant or machinery, and can be of sufficient force to damage or rupture the plant. If the shock wave from the primary explosion enters the surrounding area, it will disturb any settled dust layers, forming a second dust cloud, and often initiate a much larger secondary explosion. All large scale explosions have resulted from chain reactions of this type.
- Dry dust can be charged electrostatically by turbulence, pneumatic transport, pouring, in exhaust ducts and during transport.
- Build-up of electrostatic charge may be prevented by bonding and grounding.
- Powder handling equipment such as dust collectors, dryers and mills may require additional protection measures such as explosion venting.
- All movable parts coming in contact with this material should have a speed of less than 1-meter/sec
- A sudden release of statically charged materials from storage or process equipment, particularly at elevated temperatures and/ or pressure, may result in ignition especially in the absence of an apparent ignition source
- One important effect of the particulate nature of powders is that the surface area and surface structure (and often moisture content) can vary widely from sample to sample, depending of how the powder was manufactured and handled; this means that it is virtually impossible to use flammability data published in the literature for dusts (in contrast to that published for gases and vapors).
- Autoignition temperatures are often quoted for dust clouds (minimum ignition temperature (MIT)) and dust layers (layer ignition temperature (LIT)); LIT generally falls as the thickness of the layer increases.

Combustion products include carbon monoxide (CO), carbon dioxide (CO2), hydrogen chloride, phosgene, nitrogen oxides (NOx), other pyrolysis products typical of burning organic material.

May emit poisonous fumes.

FIRE INCOMPATIBILITY

Avoid contamination with oxidizing agents i.e. nitrates, oxidizing acids, chlorine bleaches, pool chlorine etc. as ignition may result

Section 6 - ACCIDENTAL RELEASE MEASURES

MINOR SPILLS

- Clean up waste regularly and abnormal spills immediately.
- Avoid breathing dust and contact with skin and eyes.
- Wear protective clothing, gloves, safety glasses and dust respirator.
- Use dry clean up procedures and avoid generating dust.
- Vacuum up or sweep up. NOTE Vacuum cleaner must be fitted with an exhaust micro filter (HEPA type) (consider explosion-proof
 machines designed to be grounded during storage and use).
- Dampen with water to prevent dusting before sweeping.
- Place in suitable containers for disposal.

MAJOR SPILLS

Moderate hazard.

- CAUTION Advise personnel in area.
- Alert Emergency Services and tell them location and nature of hazard.
- Control personal contact by wearing protective clothing.

- Prevent, by any means available, spillage from entering drains or water courses.
- Recover product wherever possible.
- IF DRY Use dry clean up procedures and avoid generating dust. Collect residues and place in sealed plastic bags or other containers for disposal. IF WET Vacuum/shovel up and place in labelled containers for disposal.
- ALWAYS Wash area down with large amounts of water and prevent runoff into drains.
- If contamination of drains or waterways occurs, advise Emergency Services.

Section 7 - HANDLING AND STORAGE

PROCEDURE FOR HANDLING

- Avoid all personal contact, including inhalation.
- Wear protective clothing when risk of exposure occurs.
- Use in a well-ventilated area.
- Prevent concentration in hollows and sumps.
- DO NOT enter confined spaces until atmosphere has been checked.
- DO NOT allow material to contact humans, exposed food or food utensils.
- Avoid contact with incompatible materials.
- When handling, DO NOT eat, drink or smoke.
- Keep containers securely sealed when not in use.
- Avoid physical damage to containers.
- Always wash hands with soap and water after handling.
- Work clothes should be laundered separately. Launder contaminated clothing before re-use.
- Use good occupational work practice.
- Observe manufacturer's storing and handling recommendations.
- Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions are maintained. Empty containers may contain residual dust which has the potential to accumulate following settling. Such dusts may explode in the presence of an appropriate ignition source.
- Do NOT cut, drill, grind or weld such containers.
- In addition ensure such activity is not performed near full, partially empty or empty containers without appropriate workplace safety authorization or permit.

RECOMMENDED STORAGE METHODS

- Glass container is suitable for laboratory quantities
- Polyethylene or polypropylene container.
- Check all containers are clearly labelled and free from leaks.

STORAGE REQUIREMENTS

- Store in original containers.
- Keep containers securely sealed.
- Store in a cool, dry, well-ventilated area.
- Store away from incompatible materials and foodstuff containers.
- Protect containers against physical damage and check regularly for leaks.
- Observe manufacturer's storing and handling recommendations.

Section 8 - EXPOSURE CONTROLS / PERSONAL PROTECTION

EXPOSURE CONTROLS

The following materials had no OELs on our records

pirenzepine dihydrochloride CAS29868-97-1

PERSONAL PROTECTION

RESPIRATOR

Particulate. (AS/NZS 1716 & 1715, EN 1432000 & 1492001, ANSI Z88 or national equivalent)

EYE

When handling very small quantities of the material eye protection may not be required.

For laboratory, larger scale or bulk handling or where regular exposure in an occupational setting occurs

- Chemical goggles
- Face shield. Full face shield may be required for supplementary but never for primary protection of eyes
- Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lens or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59], [AS/NZS 1336 or national equivalent]

HANDS/FEET

Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include

- frequency and duration of contact,
- chemical resistance of glove material,
- glove thickness and
- dexterity

Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739, AS/NZS 2161.1 or national equivalent).

- When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended.
- When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended.
- Contaminated gloves should be replaced.

Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.

- Rubber gloves (nitrile or low-protein, powder-free latex, latex/ nitrile). Employees allergic to latex gloves should use nitrile gloves in preference.
- Double gloving should be considered.
- PVC gloves.
- Change gloves frequently and when contaminated, punctured or torn.
- Wash hands immediately after removing gloves.
- Protective shoe covers. [AS/NZS 2210]
- Head covering.

Experience indicates that the following polymers are suitable as glove materials for protection against undissolved, dry solids, where abrasive particles are not present.

- polychloroprene
- nitrile rubber
- butyl rubber
- fluorocaoutchouc
- polyvinyl chloride

Gloves should be examined for wear and/ or degradation constantly.

OTHER

- For quantities up to 500 grams a laboratory coat may be suitable.
- For quantities up to 1 kilogram a disposable laboratory coat or coverall of low permeability is recommended. Coveralls should be buttoned at collar and cuffs.
- For quantities over 1 kilogram and manufacturing operations, wear disposable coverall of low permeability and disposable shoe
 covers.
- For manufacturing operations, air-supplied full body suits may be required for the provision of advanced respiratory protection.
- Eye wash unit.
- Ensure there is ready access to an emergency shower.
- For Emergencies Vinyl suit

ENGINEERING CONTROLS

■ Enclosed local exhaust ventilation is required at points of dust, fume or vapor generation.

HEPA terminated local exhaust ventilation should be considered at point of generation of dust, fumes or vapors.

Barrier protection or laminar flow cabinets should be considered for laboratory scale handling.

When handling quantities up to 500 gram in either a standard laboratory with general dilution ventilation (e.g. 6-12 air changes per hour) is preferred. Quantities up to 1 kilogram may require a designated laboratory using fume hood, biological safety cabinet, or approved vented enclosures. Quantities exceeding 1 kilogram should be handled in a designated laboratory or containment laboratory using appropriate barrier/ containment technology.

Manufacturing and pilot plant operations require barrier/ containment and direct coupling technologies.

Barrier/ containment technology and direct coupling (totally enclosed processes that create a barrier between the equipment and the room) typically use double or split butterfly valves and hybrid unidirectional airflow/ local exhaust ventilation solutions (e.g. powder containment booths). Glove bags, isolator glove box systems are optional. HEPA filtration of exhaust from dry product handling areas is required.

Fume-hoods and other open-face containment devices are acceptable when face velocities of at least 1 m/s (200 feet/minute) are achieved. Partitions, barriers, and other partial containment technologies are required to prevent migration of the material to uncontrolled areas. For non-routine emergencies maximum local and general exhaust are necessary. Air contaminants generated in the workplace

possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to effectively remove the contaminant.

Type of Contaminant Air Speed

solvent, vapors, etc. evaporating from tank (in still air) 0.25-0.5 m/s (50-100 f/min.)

aerosols, fumes from pouring operations, intermittent

container filling, low speed conveyer transfers (released 0.5-1 m/s (100-200 f/min.)

at low velocity into zone of active generation)

direct spray, drum filling, conveyer loading, crusher

dusts, gas discharge (active generation into zone of 1-2.5 m/s (200-500 f/min.)

rapid air motion)

Within each range the appropriate value depends on

Lower end of the range Upper end of the range

1 Room air currents minimal or favourable to capture
 2 Contaminants of low toxicity or of nuisance value only.
 2 Contaminants of high toxicity

3 Intermittent, low production.

4 Large hood or large air mass in motion

3 High production, heavy use
4 Small hood-local control only

Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 1.2.5 m/s (200 500 f/min.) for extraction of gases displaying of the extraction point. Other

should be a minimum of 1-2.5 m/s (200-500 f/min.) for extraction of gases discharged 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used.

The need for respiratory protection should also be assessed where incidental or accidental exposure is anticipated Dependent on levels of contamination, PAPR, full face air purifying devices with P2 or P3 filters or air supplied respirators should be evaluated.

The following protective devices are recommended where exposures exceed the recommended exposure control guidelines by factors of

10; high efficiency particulate (HEPA) filters or cartridges

10-25; loose-fitting (Tyvek or helmet type) HEPA powered-air purifying respirator.

25-50; a full face-piece negative pressure respirator with HEPA filters

50-100; tight-fitting, full face-piece HEPA PAPR

100-1000; a hood-shroud HEPA PAPR or full face-piece supplied air respirator operated in pressure demand or other positive pressure mode.

Section 9 - PHYSICAL AND CHEMICAL PROPERTIES

PHYSICAL PROPERTIES

Solid

Mixes with water.

State	Divided solid	Molecular Weight	424.3
Melting Range (°F)	Not available	Viscosity	Not Applicable
Boiling Range (°F)	Not available	Solubility in water (g/L)	Miscible
Flash Point (°F)	Not available	pH (1% solution)	Not available
Decomposition Temp (°F)	Not available.	pH (as supplied)	Not applicable
Autoignition Temp (°F)	Not available	Vapor Pressure (mmHG)	Negligible
Upper Explosive Limit (%)	Not available.	Specific Gravity (water=1)	Not available
Lower Explosive Limit (%)	Not available	Relative Vapor Density (air=1)	>1
Volatile Component (%vol)	Negligible	Evaporation Rate	Not available

APPEARANCE

Solid; mixes with water.

Section 10 - CHEMICAL STABILITY

CONDITIONS CONTRIBUTING TO INSTABILITY

Presence of incompatible materials.

- Product is considered stable.
- Hazardous polymerization will not occur.

STORAGE INCOMPATIBILITY

Avoid reaction with oxidizing agents

For incompatible materials - refer to Section 7 - Handling and Storage.

Section 11 - TOXICOLOGICAL INFORMATION

pirenzepine dihydrochloride

TOXICITY AND IRRITATION

PIRENZEPINE DIHYDROCHLORIDE

■ unless otherwise specified data extracted from RTECS - Register of Toxic Effects of Chemical Substances.

TOXICITY IRRITATION

Oral (rat) LD50 5000 mg/kg Nil Reported

Intraperitoneal (rat) LD50 440 mg/kg

Subcutaneous (rat) LD50 3000 mg/kg

Intravenous (rat) LD50 92 mg/kg

Oral (mouse) LD50 2600 mg/kg

Intraperitoneal (mouse) LD50 412 mg/kg

Subcutaneous (mouse) LD50 2100 mg/kg

Intravenous (mouse) LD50 96 mg/kg

Oral (dog) LD50 >3700 mg/kg

Intravenous (dog) LD50 62.5 mg/kg

Oral (rabbit) LD50 3000 mg/kg

Effects on fertility, foetotoxicity, effects on newborn recorded.

Section 12 - ECOLOGICAL INFORMATION

No data

Ecotoxicity

Ingredient	Persistence: Water/Soil	Persistence: Air	Bioaccumulation	Mobility
pirenzepine dihydrochloride	No Data Available	No Data Available		

Section 13 - DISPOSAL CONSIDERATIONS

Disposal Instructions

All waste must be handled in accordance with local, state and federal regulations.

Legislation addressing waste disposal requirements may differ by country, state and/ or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked.

A Hierarchy of Controls seems to be common - the user should investigate:

- Reduction
- Reuse
- Recycling
- Disposal (if all else fails)

This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. Shelf life considerations should also be applied in making decisions of this type. Note that properties of a material may change in use, and recycling or reuse may not always be appropriate. In most instances the supplier of the material should be consulted.

- DO NOT allow wash water from cleaning or process equipment to enter drains.
- It may be necessary to collect all wash water for treatment before disposal.
- In all cases disposal to sewer may be subject to local laws and regulations and these should be considered first.
- Where in doubt contact the responsible authority.

- Recycle wherever possible.
- Consult manufacturer for recycling options or consult local or regional waste management authority for disposal if no suitable treatment or disposal facility can be identified.
- Dispose of by: burial in a land-fill specifically licenced to accept chemical and / or pharmaceutical wastes or Incineration in a licenced
 apparatus (after admixture with suitable combustible material)
- Decontaminate empty containers. Observe all label safeguards until containers are cleaned and destroyed.

Section 14 - TRANSPORTATION INFORMATION

NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS: DOT, IATA, IMDG

Section 15 - REGULATORY INFORMATION

pirenzepine dihydrochloride (CAS: 29868-97-1) is found on the following regulatory lists;

"US - Massachusetts Drinking Water - Secondary Contaminants Maximum Contaminant Levels (MCLs)", "US - Utah Secondary Drinking Water Standards - Inorganic Contaminants", "WHO Guidelines for Drinking-water Quality - Chemicals for which guideline values have not been established"

Section 16 - OTHER INFORMATION

LIMITED EVIDENCE

- Ingestion may produce health damage*.
- Cumulative effects may result following exposure*.
- * (limited evidence).
- Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references.

A list of reference resources used to assist the committee may be found at:

www.chemwatch.net/references.

- The (M)SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.
- For detailed advice on Personal Protective Equipment, refer to the following U.S. Regulations and Standards:

OSHA Standards - 29 CFR:

1910.132 - Personal Protective Equipment - General requirements

1910.133 - Eye and face protection

1910.134 - Respiratory Protection

1910.136 - Occupational foot protection

1910.138 - Hand Protection

Eye and face protection - ANSI Z87.1

Foot protection - ANSI Z41

Respirators must be NIOSH approved.

This document is copyright. Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH. TEL (+61 3) 9572 4700.

www.Chemwatch.net

Issue Date: Dec-15-2008 Print Date:Feb-8-2012