3-tert-Butyl-4-hydroxyanisole

sc-204621

Material Safety Data Sheet

The Power to Questio

Hazard Alert Code Key:

EXTREME

HIGH

MODERATE

LOW

Section 1 - CHEMICAL PRODUCT AND COMPANY IDENTIFICATION

PRODUCT NAME

3-tert-Butyl-4-hydroxyanisole

STATEMENT OF HAZARDOUS NATURE

CONSIDERED A HAZARDOUS SUBSTANCE ACCORDING TO OSHA 29 CFR 1910.1200.

NFPA

SUPPLIER

Company: Santa Cruz Biotechnology, Inc.

Address:

2145 Delaware Ave Santa Cruz, CA 95060

Telephone: 800.457.3801 or 831.457.3800

Emergency Tel: CHEMWATCH: From within the US and

Canada: 877-715-9305

Emergency Tel: From outside the US and Canada: +800 2436

2255 (1-800-CHEMCALL) or call +613 9573 3112

PRODUCT USE

Antioxidant for fats and oils, food packing. Use in food restricted.

SYNONYMS

C11-H16-O2, (CH3)3CC6H3OH(OCH3), 3-t-butyl-4-hydroxyanisole, 3-t-butyl-4-hydroxyanisole, "phenol, 2-tert-butyl-4-methoxy-", "phenol, 2-tert-butyl-4-methoxy-", 2-tert-BHA, 2-tert-BHA, 3-BHA, 3-BHA, BHA, "2-tert-butylated hydroxyanisole", "2-tert-butyl-4-methoxyphenol, 2-tert-butyl-4-methoxyphenol, 4-methoxy-2-tert-butylphenol, "butylated hydroxyanisole", anti-oxidant, "methoxyphenol derivative"

Section 2 - HAZARDS IDENTIFICATION

CANADIAN WHMIS SYMBOLS

EMERGENCY OVERVIEW

May cause CANCER.

May cause SENSITIZATION by skin contact.

POTENTIAL HEALTH EFFECTS

ACUTE HEALTH EFFECTS

SWALLOWED

■ Accidental ingestion of the material may be damaging to the health of the individual.

- Limited evidence exists that the substance may cause irreversible but non-lethal mutagenic effects following a single exposure.
- Some phenol derivatives can cause damage to the digestive system. If absorbed, profuse sweating, thirst, nausea, vomiting diarrhea, cyanosis, restlessness, stupor, low blood pressure, gasping, abdominal pain, anemia, convulsions, coma and lung swelling can happen followed by pneumonia. There may be respiratory failure and kidney damage. Chemical burns, seizures and irregular heartbeat may result.

EYE

- There is some evidence to suggest that this material can causeeye irritation and damage in some persons.
- Some phenol derivatives may produce mild to severe eye irritation with redness, pain and blurred vision. Permanent eye injury may occur; recovery may also be complete or partial.

SKIN

- Skin contact with the material may damage the health of the individual; systemic effects may result following absorption.
- There is some evidence to suggest that this material can cause inflammation of the skin on contact in some persons.
- Phenol and its derivatives can cause severe skin irritation if contact is maintained, and can be absorbed to the skin affecting the cardiovascular and central nervous system. Effects include sweating, intense thirst, nausea and vomiting, diarrhea, cyanosis, restlessness, stupor, low blood pressure, hyperventilation, abdominal pain, anemia, convulsions, coma, lung swelling followed by pneumonia. Respiratory failure and kidney damage may follow.
- Open cuts, abraded or irritated skin should not be exposed to this material.
- Entry into the blood-stream, through, for example, cuts, abrasions or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected.

INHALED

- Inhalation of vapors, aerosols (mists, fumes) or dusts, generated by the material during the course of normal handling, may be damaging to the health of the individual.
- There is some evidence to suggest that the material can cause respiratory irritation in some persons. The body's response to such irritation can cause further lung damage.
- Persons with impaired respiratory function, airway diseases and conditions such as emphysema or chronic bronchitis, may incur further disability if excessive concentrations of particulate are inhaled.
- If phenols are absorbed via the lungs, systemic effects may occur affecting the cardiovascular and nervous systems. Inhalation can result in profuse perspiration, intense thirst, nausea, vomiting, diarrhea, cyanosis, restlessness, stupor, falling blood pressure, hyperventilation, abdominal pain, anemia, convulsions, coma, swelling and inflammation of the lung. This is followed by respiratory failure and kidney damage. Phenols also cause loss of sensation and general depression at high concentrations. The toxicities of phenol derivatives vary.
- High concentrations cause inflamed airways and watery swellingof the lungs with edema.

CHRONIC HEALTH EFFECTS

■ Skin contact with the material is more likely to cause a sensitization reaction in some persons compared to the general population.

There is ample evidence that this material can be regarded as being able to cause cancer in humans based on experiments and other information.

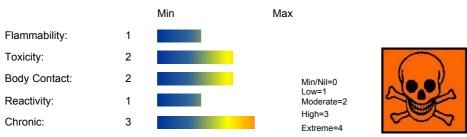
Limited evidence suggests that repeated or long-term occupational exposure may produce cumulative health effects involving organs or biochemical systems.

Exposure to the material may result in a possible risk of irreversible effects. The material may produce mutagenic effects in man. This concern is raised, generally, on the basis of

appropriate studies with similar materials using mammalian somatic cells in vivo. Such findings are often supported by positive results from in vitro mutagenicity studies.

Long-term exposure to phenol derivatives can cause skin inflammation, loss of appetite and weight, weakness, muscle aches and pain, liver damage, dark urine, loss of nails, skin eruptions, diarrhea, nervous disorders with headache, salivation, fainting, discoloration of the skin and eyes, vertigo and mental disorders, and damage to the liver and kidneys.

Exposure to small quantities may induce hypersensitivity reactions characterized by acute bronchospasm, hives (urticaria), deep dermal wheals (angioneurotic edema), running nose (rhinitis) and blurred vision. Anaphylactic shock and skin rash (non-thrombocytopenic purpura) may occur. An individual may be predisposed to such anti-body mediated reaction if other chemical agents have caused prior sensitization (cross-sensitivity).


RTECS classify BHT, an analogue of the substance, as a mutagen and tumorigen and reproductive effector. Studies with BHA, however, indicate that the substance may elicit an inhibitory effect against known carcinogens.

When administered in the diet, BHA induced papillomas and squamous cell carcinomas of the forestomach in rats of both sexes and male Syrian Golden hamsters. There was no evidence that BHA was carcinogenic to mice when administered topically or by subcutaneous or intraperitoneal injection.

Chronic exposures to dust may result in pulmonary oedema or congestion.

Section 3 - COMPOSITION / INFORMATION ON INGREDIENTS

HAZARD RATINGS

 NAME
 CAS RN
 %

 3-tert-butyl-4-hydroxyanisole
 121-00-6
 >98

- If swallowed do NOT induce vomiting.
- If vomiting occurs, lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration.
- · Observe the patient carefully.
- Never give liquid to a person showing signs of being sleepy or with reduced awareness; i.e. becoming unconscious.
- · Give water to rinse out mouth, then provide liquid slowly and as much as casualty can comfortably drink.
- Seek medical advice.

EYE

- If this product comes in contact with the eyes:
- Wash out immediately with fresh running water.
- Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids.
- If pain persists or recurs seek medical attention.
- · Removal of contact lenses after an eye injury should only be undertaken by skilled personnel.

SKIN

- If skin contact occurs:
- · Immediately remove all contaminated clothing, including footwear
- Flush skin and hair with running water (and soap if available).
- · Seek medical attention in event of irritation.

INHALED

- If fumes or combustion products are inhaled remove from contaminated area.
- · Lay patient down. Keep warm and rested.
- Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures.
- Apply artificial respiration if not breathing, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained. Perform CPR if necessary.
- Transport to hospital, or doctor.

NOTES TO PHYSICIAN

■ Treat symptomatically.

The substance is readily absorbed from the gastro-intestinal tract and may be stored in body fat following large doses. It is excreted in the urine mainly as the glucuronides of oxidation products.

Up to 77% of the dose is excreted within 24 hours.

Section 5 - FIRE FIGHTING MEASURES				
Vapour Pressure (mmHG):	Not applicable			
Upper Explosive Limit (%):	Not available.			
Specific Gravity (water=1):	1.05 @ 20 C			
Lower Explosive Limit (%):	Not available.			

EXTINGUISHING MEDIA

- Foam.
- Dry chemical powder.
- BCF (where regulations permit).
- Carbon dioxide.
- Water spray or fog Large fires only.

FIRE FIGHTING

- Alert Emergency Responders and tell them location and nature of hazard.
- Wear breathing apparatus plus protective gloves.
- Prevent, by any means available, spillage from entering drains or water course.
- Use water delivered as a fine spray to control fire and cool adjacent area.
- DO NOT approach containers suspected to be hot.
- Cool fire exposed containers with water spray from a protected location.
- If safe to do so, remove containers from path of fire.
- · Equipment should be thoroughly decontaminated after use.

GENERAL FIRE HAZARDS/HAZARDOUS COMBUSTIBLE PRODUCTS

- · Combustible solid which burns but propagates flame with difficulty.
- Avoid generating dust, particularly clouds of dust in a confined or unventilated space as dusts may form an explosive
 mixture with air, and any source of ignition, i.e. flame or spark, will cause fire or explosion. Dust clouds generated by the
 fine grinding of the solid are a particular hazard; accumulations of fine dust may burn rapidly and fiercely if ignited.
- Dry dust can be charged electrostatically by turbulence, pneumatic transport, pouring, in exhaust ducts and during transport.
- · Build-up of electrostatic charge may be prevented by bonding and grounding.
- Powder handling equipment such as dust collectors, dryers and mills may require additional protection measures such as explosion venting.

Combustion products include: carbon monoxide (CO), carbon dioxide (CO2), other pyrolysis products typical of burning organic material.

May emit poisonous fumes.

May emit corrosive fumes.

FIRE INCOMPATIBILITY

■ Avoid contamination with oxidizing agents i.e. nitrates, oxidizing acids, chlorine bleaches, pool chlorine etc. as ignition may

result.

PERSONAL PROTECTION

Glasses:

Chemical goggles.

Gloves: Respirator: Particulate

Section 6 - ACCIDENTAL RELEASE MEASURES

MINOR SPILLS

- Clean up waste regularly and abnormal spills immediately.
- · Avoid breathing dust and contact with skin and eyes.
- · Wear protective clothing, gloves, safety glasses and dust respirator.
- · Use dry clean up procedures and avoid generating dust.
- Vacuum up or sweep up. NOTE: Vacuum cleaner must be fitted with an exhaust micro filter (HEPA type) (consider explosion-proof machines designed to be grounded during storage and use).
- Dampen with water to prevent dusting before sweeping.
- · Place in suitable containers for disposal.

MAJOR SPILLS

.

- Clear area of personnel and move upwind.
- Alert Emergency Responders and tell them location and nature of hazard.
- · Wear full body protective clothing with breathing apparatus.
- Prevent, by all means available, spillage from entering drains or water courses.
- Consider evacuation (or protect in place).
- · No smoking, naked lights or ignition sources.
- · Increase ventilation.
- · Stop leak if safe to do so.
- Water spray or fog may be used to disperse / absorb vapour.
- · Contain or absorb spill with sand, earth or vermiculite.
- · Collect recoverable product into labelled containers for recycling.
- · Collect solid residues and seal in labelled drums for disposal.
- Wash area and prevent runoff into drains.
- After clean up operations, decontaminate and launder all protective clothing and equipment before storing and re-using.
- · If contamination of drains or waterways occurs, advise emergency services.

ACUTE EXPOSURE GUIDELINE LEVELS (AEGL) (in ppm)

AEGL 1: The airborne concentration of a substance above which it is predicted that the general population, including susceptible individuals, could experience notable discomfort, irritation, or certain asymptomatic nonsensory effects. However, the effects are not disabling and are transient and reversible upon cessation of exposure.

AEGL 2: The airborne concentration of a substance above which it is predicted that the general population, including susceptible individuals, could experience irreversible or other serious, long-lasting adverse health effects or an impaired ability to escape.

AEGL 3: The airborne concentration of a substance above which it is predicted that the general population, including susceptible individuals, could experience life-threatening health effects or death.

Section 7 - HANDLING AND STORAGE

PROCEDURE FOR HANDLING

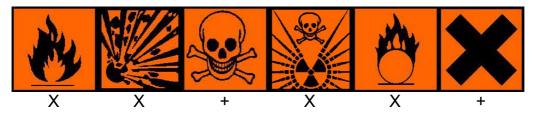
.

- · Avoid all personal contact, including inhalation.
- · Wear protective clothing when risk of exposure occurs.
- · Use in a well-ventilated area.
- Prevent concentration in hollows and sumps.
- DO NOT enter confined spaces until atmosphere has been checked.
- DO NOT allow material to contact humans, exposed food or food utensils.
- Avoid contact with incompatible materials.
- When handling, DO NOT eat, drink or smoke.
- Keep containers securely sealed when not in use.
- Avoid physical damage to containers.
- Always wash hands with soap and water after handling.
- Work clothes should be laundered separately.
- Launder contaminated clothing before re-use.
- · Use good occupational work practice.
- · Observe manufacturer's storing and handling recommendations.
- Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions are maintained.

Empty containers may contain residual dust which has the potential to accumulate following settling. Such dusts may explode in the presence of an appropriate ignition source.

. Do NOT cut, drill, grind or weld such containers

 In addition ensure such activity is not performed near full, partially empty or empty containers without appropriate workplace safety authorisation or permit.


RECOMMENDED STORAGE METHODS

- Glass container.
- DO NOT use unlined steel containers
- · Polyethylene or polypropylene container.
- Check all containers are clearly labelled and free from leaks.

STORAGE REQUIREMENTS

- · Store in original containers.
- Keep containers securely sealed.
- Store in a cool, dry, well-ventilated area.
- · Store away from incompatible materials and foodstuff containers.
- · Protect containers against physical damage and check regularly for leaks.
- · Observe manufacturer's storing and handling recommendations.

SAFE STORAGE WITH OTHER CLASSIFIED CHEMICALS

- X: Must not be stored together
- O: May be stored together with specific preventions
- +: May be stored together

Section 8 - EXPOSURE CONTROLS / PERSONAL PROTECTION

EXPOSURE CONTROLS

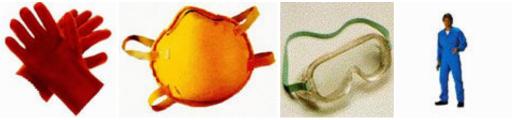
The following materials had no OELs on our records
• 3-tert-butyl-4-hydroxyanisole: CAS:121-00-6

MATERIAL DATA

3-TERT-BUTYL-4-HYDROXYANISOLE:

■ It is the goal of the ACGIH (and other Agencies) to recommend TLVs (or their equivalent) for all substances for which there is evidence of health effects at airborne concentrations encountered in the workplace.

At this time no TLV has been established, even though this material may produce adverse health effects (as evidenced in animal experiments or clinical experience). Airborne concentrations must be maintained as low as is practically possible and occupational exposure must be kept to a minimum.


NOTE: The ACGIH occupational exposure standard for Particles Not Otherwise Specified (P.N.O.S) does NOT apply.

Sensory irritants are chemicals that produce temporary and undesirable side-effects on the eyes, nose or throat. Historically occupational exposure standards for these irritants have been based on observation of workers' responses to various airborne concentrations. Present day expectations require that nearly every individual should be protected against even minor sensory irritation and exposure standards are established using uncertainty factors or safety factors of 5 to 10 or more. On occasion animal no-observable-effect-levels (NOEL) are used to determine these limits where human results are unavailable. An additional approach, typically used by the TLV committee (USA) in determining respiratory standards for this group of chemicals, has been to assign ceiling values (TLV C) to rapidly acting irritants and to assign short-term exposure limits (TLV STELs) when the weight of evidence from irritation, bioaccumulation and other endpoints combine to warrant such a limit. In contrast the MAK Commission (Germany) uses a five-category system based on intensive odour, local irritation, and elimination half-life. However this system is being replaced to be consistent with the European Union (EU) Scientific Committee for Occupational Exposure Limits (SCOEL); this is more closely allied to that of the USA. OSHA (USA) concluded that exposure to sensory irritants can:

- cause inflammation
- cause increased susceptibility to other irritants and infectious agents
- · lead to permanent injury or dysfunction
- permit greater absorption of hazardous substances and
- acclimate the worker to the irritant warning properties of these substances thus increasing the risk of overexposure.

CEL TWA: 10 mg/m3 (as analogue for 2,6-di-tert-butyl-p-cresol)

PERSONAL PROTECTION

Consult your EHS staff for recommendations

EYE

- .
- Safety glasses with side shields.
- · Chemical goggles.

Contact lenses pose a special hazard; soft lenses may absorb irritants and all lenses concentrate them. DO NOT wear contact lenses.

HANDS/FEET

■ NOTE: The material may produce skin sensitization in predisposed individuals. Care must be taken, when removing gloves and other protective equipment, to avoid all possible skin contact.

Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include: such as:

- frequency and duration of contact,
- · chemical resistance of glove material,
- · glove thickness and
- dexterity

Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739).

- · When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374) is recommended.
- When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374) is recommended.
- Contaminated gloves should be replaced.

Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.

Experience indicates that the following polymers are suitable as glove materials for protection against undissolved, dry solids, where abrasive particles are not present.

- polychloroprene
- nitrile rubber
- · butyl rubber
- fluorocaoutchouc
- · polyvinyl chloride

Gloves should be examined for wear and/ or degradation constantly.

OTHER

- Employees working with confirmed human carcinogens should be provided with, and be required to wear, clean, full body protective clothing (smocks, coveralls, or long-sleeved shirt and pants), shoe covers and gloves prior to entering the
- Employees engaged in handling operations involving carcinogens should be provided with, and required to wear and use half-face filter-type respirators with filters for dusts, mists and fumes, or air purifying canisters or cartridges. A respirator affording higher levels of protection may be substituted.
- Emergency deluge showers and eyewash fountains, supplied with potable water, should be located near, within sight of, and on the same level with locations where direct exposure is likely.
- Prior to each exit from an area containing confirmed human carcinogens, employees should be required to remove and leave protective clothing and equipment at the point of exit and at the last exit of the day, to place used clothing and equipment in impervious containers at the point of exit for purposes of decontamination or disposal. The contents of such impervious containers must be identified with suitable labels. For maintenance and decontamination activities, authorized employees entering the area should be provided with and required to wear clean, impervious garments, including gloves, boots and continuous-air supplied hood.
- Prior to removing protective garments the employee should undergo decontamination and be required to shower upon removal of the garments and hood.
- Overalls.
- P.V.C. apron.
- Barrier cream.
- Skin cleansing cream.
- Eye wash unit.
- Respirators may be necessary when engineering and administrative controls do not adequately prevent exposures.
- The decision to use respiratory protection should be based on professional judgment that takes into account toxicity information, exposure measurement data, and frequency and likelihood of the worker's exposure - ensure users are not subject to high thermal loads which may result in heat stress or distress due to personal protective equipment (powered, positive flow, full face apparatus may be an option).
- Published occupational exposure limits, where they exist, will assist in determining the adequacy of the selected respiratory These may be government mandated or vendor recommended.
- Certified respirators will be useful for protecting workers from inhalation of particulates when properly selected and fit tested as part of a complete respiratory protection program.
- Use approved positive flow mask if significant quantities of dust becomes airborne.
- Try to avoid creating dust conditions.

RESPIRATOR

Protection Factor	Half-Face Respirator	Full-Face Respirator	Powered Air Respirator
10 x PEL	P1	-	PAPR-P1
	Air-line*	-	-
50 x PEL	Air-line**	P2	PAPR-P2
100 x PEL	-	P3	-
		Air-line*	-
100+ x PEL	_	Air-line**	PAPR-P3

* - Negative pressure demand ** - Continuous flow

Explanation of Respirator Codes:

Class 1 low to medium absorption capacity filters.

Class 2 medium absorption capacity filters.

Class 3 high absorption capacity filters.
PAPR Powered Air Purifying Respirator (positive pressure) cartridge.

Type A for use against certain organic gases and vapors.

Type AX for use against low boiling point organic compounds (less than 65°C).

Type B for use against certain inorganic gases and other acid gases and vapors.

Type E for use against sulfur dioxide and other acid gases and vapors.

Type K for use against ammonia and organic ammonia derivatives

Class P1 intended for use against mechanically generated particulates of sizes most commonly encountered in industry, e.g. asbestos, silica.

Class P2 intended for use against both mechanically and thermally generated particulates, e.g. metal fume. Class P3 intended for use against all particulates containing highly toxic materials, e.g. beryllium.

The local concentration of material, quantity and conditions of use determine the type of personal protective equipment

Use appropriate NIOSH-certified respirator based on informed professional judgement. In conditions where no reasonable estimate of exposure can be made, assume the exposure is in a concentration IDLH and use NIOSH-certified full face pressure demand SCBA with a minimum service life of 30 minutes, or a combination full facepiece pressure demand SAR with auxiliary self-contained air supply. Respirators provided only for escape from IDLH atmospheres shall be NIOSH-certified for escape from the atmosphere in which they will be used.

ENGINEERING CONTROLS

- Employees exposed to confirmed human carcinogens should be authorized to do so by the employer, and work in a regulated area.
- Work should be undertaken in an isolated system such as a "glove-box". Employees should wash their hands and arms upon completion of the assigned task and before engaging in other activities not associated with the isolated system.
- Within regulated areas, the carcinogen should be stored in sealed containers, or enclosed in a closed system, including piping systems, with any sample ports or openings closed while the carcinogens are contained within.
- Open-vessel systems are prohibited.
- Each operation should be provided with continuous local exhaust ventilation so that air movement is always from ordinary work areas to the operation.
- Exhaust air should not be discharged to regulated areas, non-regulated areas or the external environment unless decontaminated. Clean make-up air should be introduced in sufficient volume to maintain correct operation of the local exhaust system.
- For maintenance and decontamination activities, authorized employees entering the area should be provided with and required to wear clean, impervious garments, including gloves, boots and continuous-air supplied hood. Prior to removing protective garments the employee should undergo decontamination and be required to shower upon removal of the garments and hood.
- Except for outdoor systems, regulated areas should be maintained under negative pressure (with respect to non-regulated areas).
- Local exhaust ventilation requires make-up air be supplied in equal volumes to replaced air.
- Laboratory hoods must be designed and maintained so as to draw air inward at an average linear face velocity of 150 feet/ min. with a minimum of 125 feet/ min. Design and construction of the fume hood requires that insertion of any portion of the employees body, other than hands and arms, be disallowed.

Section 9 - PHYSICAL AND CHEMICAL PROPERTIES

PHYSICAL PROPERTIES

Solid

Does not mix with water.

Sinks in water.

Onno in water.			
State	Divided solid	Molecular Weight	180.24
Melting Range (°F)	118.4- 131	Viscosity	Not Applicable
Boiling Range (°F)	507.2- 518	Solubility in water (g/L)	Immiscible
Flash Point (°F)	312.8	pH (1% solution)	Not applicable.
Decomposition Temp (°F)	Not available.	pH (as supplied)	Not applicable
Autoignition Temp (°F)	Not available.	Vapour Pressure (mmHG)	Not applicable
Upper Explosive Limit (%)	Not available.	Specific Gravity (water=1)	1.05 @ 20 C
Lower Explosive Limit (%)	Not available.	Relative Vapor Density (air=1)	6.2
Volatile Component (%vol)	Not applicable.	Evaporation Rate	Not applicable

APPEARANCE

White waxy solid. Insoluble in water. Soluble in petroleum ether, alcohol, fats and oils. Slightly aromatic odour.

Section 10 - CHEMICAL STABILITY

CONDITIONS CONTRIBUTING TO INSTABILITY

- · Presence of incompatible materials.
- · Product is considered stable.
- Hazardous polymerization will not occur.
- Presence of heat source and ignition source

STORAGE INCOMPATIBILITY

- · Phenols are incompatible with strong reducing substances such as hydrides, nitrides, alkali metals, and sulfides.
- · Avoid use of aluminium, copper and brass alloys in storage and process equipment.
- Heat is generated by the acid-base reaction between phenols and bases.
- Phenols are sulfonated very readily (for example, by concentrated sulfuric acid at room temperature), these reactions generate heat.
- Phenols are nitrated very rapidly, even by dilute nitric acid.
- Nitrated phenols often explode when heated. Many of them form metal salts that tend toward detonation by rather mild shock.

Avoid reaction with oxidizing agents.

For incompatible materials - refer to Section 7 - Handling and Storage.

Section 11 - TOXICOLOGICAL INFORMATION

3-tert-butyl-4-hydroxyanisole

TOXICITY AND IRRITATION

■ unless otherwise specified data extracted from RTECS - Register of Toxic Effects of Chemical Substances.

TOXICITY **IRRITATION**

Oral (rat) LD50: 2910 mg/kg Nil Reported

Intaperitoneal (rat) LD50: 32 mg/kg

■ Contact allergies quickly manifest themselves as contact eczema, more rarely as urticaria or Quincke's edema. The pathogenesis of contact eczema involves a cell-mediated (T lymphocytes) immune reaction of the delayed type. Other allergic skin reactions, e.g. contact urticaria, involve antibody-mediated immune reactions. The significance of the contact allergen is not simply determined by its sensitization potential: the distribution of the substance and the opportunities for contact with it are equally important. A weakly sensitizing substance which is widely distributed can be a more important allergen than one with stronger sensitizing potential with which few individuals come into contact. From a clinical point of view, substances are noteworthy if they produce an allergic test reaction in more than 1% of the persons tested.

WARNING: This substance has been classified by the IARC as Group 2B: Possibly Carcinogenic to Humans.

Tenth Annual Report on Carcinogens: Substance anticipated to be Carcinogen

[National Toxicology Program: U.S. Dep. of Health & Human Services 2002].

NOTE: Substance has been shown to be mutagenic in at least one assay, or belongs to a family of chemicals producing damage or change to cellular DNA.

for butylated hydroxyanisole

Section 12 - ECOLOGICAL INFORMATION

Refer to data for ingredients, which follows: 3-TERT-BUTYL-4-HYDROXYANISOLE:

- Environmental toxicity is a function of the n-octanol/ water partition coefficient (log Pow, log Kow). Phenols with log Pow >7.4 are expected to exhibit low toxicity to aquatic organisms. However the toxicity of phenols with a lower log Pow is variable, ranging from low toxicity (LC50 values >100 mg/l) to highly toxic (LC50 values <1 mg/l) dependent on log Pow, molecular weight and substitutions on the aromatic ring. Dinitrophenols are more toxic than predicted from QSAR estimates. Hazard information for these groups is not generally available.
- DO NOT discharge into sewer or waterways.

Section 13 - DISPOSAL CONSIDERATIONS

Disposal Instructions

All waste must be handled in accordance with local, state and federal regulations.

Puncture containers to prevent re-use and bury at an authorized landfill.

Legislation addressing waste disposal requirements may differ by country, state and/ or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked.

A Hierarchy of Controls seems to be common - the user should investigate:

- Reduction
- Reuse
- Recycling
- Disposal (if all else fails)

This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. Shelf life considerations should also be applied in making decisions of this type. Note that properties of a material may change in use, and recycling or reuse may not always be appropriate.

DO NOT allow wash water from cleaning equipment to enter drains. Collect all wash water for treatment before disposal.

- Recycle wherever possible
- Consult manufacturer for recycling options or consult Waste Management Authority for disposal if no suitable treatment or disposal facility can be identified.
- Dispose of by: Burial in a licensed land-fill or Incineration in a licensed apparatus (after admixture with suitable combustible
- Decontaminate empty containers. Observe all label safeguards until containers are cleaned and destroyed.

Section 14 - TRANSPORTATION INFORMATION

NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS: DOT, IATA, IMDG

Section 15 - REGULATORY INFORMATION

3-tert-butyl-4-hydroxyanisole (CAS: 121-00-6) is found on the following regulatory lists;

"Canada Domestic Substances List (DSL)","US Toxic Substances Control Act (TSCA) - Inventory"

LIMITED EVIDENCE

- Inhalation skin contact and/or ingestion may produce health damage*.
- Cumulative effects may result following exposure*.
- May produce discomfort of the eyes respiratory tract and skin*.
- Exposure may produce irreversible effects*.
- * (limited evidence).

Reasonable care has been taken in the preparation of this information, but the author makes no warranty of merchantability or any other warranty, expressed or implied, with respect to this information. The author makes no representations and assumes no liability for any direct, incidental or consequential damages resulting from its use. For additional technical information please call our toxicology department on +800 CHEMCALL.

- Classification of the mixture and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references.

 A list of reference resources used to assist the committee may be found at:

 www.chemwatch.net/references.
- The (M)SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

This document is copyright. Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH. TEL (+61 3) 9572 4700.

Issue Date: Aug-17-2009 Print Date: Apr-21-2010