Bezafibrate

sc-204650

Material Safety Data Sheet

The Power to Questio

Hazard Alert Code Key:

EXTREME

HIGH

MODERATE

LOW

Section 1 - CHEMICAL PRODUCT AND COMPANY IDENTIFICATION

PRODUCT NAME

Bezafibrate

STATEMENT OF HAZARDOUS NATURE

CONSIDERED A HAZARDOUS SUBSTANCE ACCORDING TO OSHA 29 CFR 1910.1200.

NFPA

SUPPLIER

Company: Santa Cruz Biotechnology, Inc.

Address:

2145 Delaware Ave Santa Cruz, CA 95060

Telephone: 800.457.3801 or 831.457.3800

Emergency Tel: CHEMWATCH: From within the US and

Canada: 877-715-9305

Emergency Tel: From outside the US and Canada: +800 2436

2255 (1-800-CHEMCALL) or call +613 9573 3112

PRODUCT USE

Antihyperlipoproteinaemic; a fibrate drug. Reduces elevated plasma concentrations of triglycerides, elevated concentrations of very low-density lipoproteins and to a smaller extent elevated plasma concentrations of cholesterol. Used in the treatment of type III, IV, V hyperlipoproteinaemia.

SYNONYMS

C19-H20-CI-N-O4, C19-H20-CI-N-O4, CIC6H4CONHCH2CH2C6H4OC(CH3)2CO2H, "propionic acid, 2-[4-(2-((4-chlorobenzoyl)amino)ethyl)phenoxy]-2-methyl", "propionic acid, 2-[4-(2-((4-chlorobenzoyl)amino)ethyl)phenoxy]-2-methyl", 2-[p-(2-(p-chlorobenzamido)ethyl)phenoxy]-2-methyl, 2-[p-(2-(p-chlorobenzamido)ethyl)phenoxy]-2-methyl, "propionic acid", alpha-[4-(4-chlorobenzoylaminoethyl)phenoxy]isobut, "yric acid", Befizal, Bezalip, Bezatol, Bezafibrat, Bezafibrato, BF-759, BM-15075, Cedur, Difaterol, antihyperlipoproteinemic

Section 2 - HAZARDS IDENTIFICATION

CANADIAN WHMIS SYMBOLS

EMERGENCY OVERVIEW

May cause SENSITIZATION by skin contact. Harmful by inhalation, in contact with skin and if swallowed.

POTENTIAL HEALTH EFFECTS ACUTE HEALTH EFFECTS

SWALLOWED

- Accidental ingestion of the material may be harmful; animal experiments indicate that ingestion of less than 150 gram may be fatal or may produce serious damage to the health of the individual.
- Side-effects of clofibrate intake include nausea, gastrointestinal discomfort (with diarrhoea), drowsiness, headache, dizziness, weight-gain, pruritus, skin rash, alopecia, leucopenia, pancreatitis and cardiac arrhythmias. A rise in serum aminotransferase values may also occur following clofibrate treatment; hepatomegaly (enlarged liver) has been reported though this seems not to be associated with hepatotoxicity.

Similar side-effects have been seen in some clofibrate analogues.

■ Chlorphenoxy compounds irritate the digestive system and cause nausea and vomiting, chest pain, and diarrhea. Taking large doses can result in mineral imbalance, temperature changes, hyperventilation, low blood pressure, dilated blood vessels, damage to the heart and liver with death of white blood cells, and convulsions. Most salts and esters of 2,4-D exhibit similar effects, although the free acid is more toxic. Massive doses can cause ventricular fibrillation followed by death. If death is delayed, there may be a sluggishness followed by spastic changes in muscles and inco-ordination. Severe cases cause apathy, weakness in the legs, regular muscle spasms and coma. Subacute poisonings cause severe nosebleeds, bleeding from the mouth and irritation of the eye and nose. Clinically, poisonings are uncommon, although muscle weakness and nervous symptoms in the extremities are sometimes reported. The substances are not metabolized and are excreted only slowly from

EYE

- There is some evidence to suggest that this material can causeeye irritation and damage in some persons.
- Corneal injury resulting from 2,4-D exposure may be slow to heal.

- Skin contact with the material may be harmful; systemic effects may resultfollowing absorption.
- The material is not thought to be a skin irritant (as classified using animal models). Abrasive damage however, may result from prolonged exposures. Good hygiene practice requires that exposure be kept to a minimum and that suitable gloves be used in an occupational setting.
- Open cuts, abraded or irritated skin should not be exposed to this material.
- 2,4-D and its derivatives can all be absorbed through the skin of humans. Severe peripheral neuropathy has followed causing limb paralysis and loss of sensation. Fatigue, nausea, vomiting, anorexia, diarrhea and swelling occur, followed by "pins and needles", pain and paralysis. Disability is long-lasting.

 ■ Entry into the blood-stream, through, for example, cuts, abrasions or lesions, may produce systemic injury with harmful
- effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected.

INHALED

- Inhalation of dusts, generated by the material, during the course of normalhandling, may be harmful.
- The material is not thought to produce respiratory irritation (as classified using animal models). Nevertheless inhalation of dusts, or fume, especially for prolonged periods, may produce respiratory discomfort and occasionally, distress.
- Persons with impaired respiratory function, airway diseases and conditions such as emphysema or chronic bronchitis, may incur further disability if excessive concentrations of particulate are inhaled.
- Inhalation of chlorophenoxy dusts or mists may result in sore throat, burning sensations in the throat and chest, cough, tears, inflamed nose, dizziness and inco-ordination, as a result of absorption from the lungs.

CHRONIC HEALTH EFFECTS

■ There has been concern that this material can cause cancer or mutations, but there is not enough data to make an assessment

Skin contact with the material is more likely to cause a sensitization reaction in some persons compared to the general population.

Limited evidence suggests that repeated or long-term occupational exposure may produce cumulative health effects involving organs or biochemical systems.

Clofibrate was tested carcinogenicity by oral administration in the diet of rats and mice. In rats clofibrate produced hepatocellular carcinomas.

Clofibrate was tested in several experiments by combined administration with other chemicals. It enhanced the hepatocarcinogenicity of N-nitrosamines in rats and hamsters. It did not enhance the carcinogenicity of 2-acetylaminofluorene

Long term exposure to high dust concentrations may cause changes in lung function i.e. pneumoconiosis; caused by particles less than 0.5 micron penetrating and remaining in the lung. Prime symptom is breathlessness; lung shadows show on X-ray. Chlorophenoxy herbicides cause an increased risk of cancers of soft tissue, lymph and bronchi. Inflammation of skin can result from long term contact. Chronic exposure to 2,4-D can cause nausea, liver changes, skin eruptions, irritation of the airways and eyes, as well as nervous changes. People with chronic health conditions or who have endocrinological or immune disorders should not be exposed to herbicides.

Section 3 - COMPOSITION / INFORMATION ON INGREDIENTS

HAZARD RATINGS

SWALLOWED

- IF SWALLOWED, REFER FOR MEDICAL ATTENTION, WHERE POSSIBLE, WITHOUT DELAY.
- Where Medical attention is not immediately available or where the patient is more than 15 minutes from a hospital or unless instructed otherwise:
- For advice, contact a Poisons Information Center or a doctor.
- Urgent hospital treatment is likely to be needed.
- · If conscious, give water to drink.
- INDUCE vomiting with fingers down the back of the throat, ONLY IF CONSCIOUS. Lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration.

NOTE: Wear a protective glove when inducing vomiting by mechanical means.

- In the mean time, qualified first-aid personnel should treat the patient following observation and employing supportive measures as indicated by the patient's condition.
- If the services of a medical officer or medical doctor are readily available, the patient should be placed in his/her care and a
 copy of the MSDS should be provided. Further action will be the responsibility of the medical specialist.
- If medical attention is not available on the worksite or surroundings send the patient to a hospital together with a copy of the MSDS.

EYE

- If this product comes in contact with the eyes:
- Wash out immediately with fresh running water.
- Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids.
- If pain persists or recurs seek medical attention.
- · Removal of contact lenses after an eye injury should only be undertaken by skilled personnel.

SKIN

- If skin contact occurs:
- · Immediately remove all contaminated clothing, including footwear
- Flush skin and hair with running water (and soap if available).
- · Seek medical attention in event of irritation.

INHALED

- If fumes or combustion products are inhaled remove from contaminated area.
- · Lay patient down. Keep warm and rested.
- Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures.
- Apply artificial respiration if not breathing, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained. Perform CPR if necessary.
- · Transport to hospital, or doctor.

NOTES TO PHYSICIAN

■ Treat symptomatically.

Following exposures to chlorphenoxy compounds:

- Acute toxic reactions are rare. The by-product of production, dioxin, may be implicated in subacute features such as hepatic enlargement, chloracne, neuromuscular symptoms and deranged porphyrin metabolism.
- Large intentional overdoses result in coma, metabolic acidosis, myalgias, muscle weakness, elevated serum creatine kinase, myoglobinuria, irritation of the skin, eyes, respiratory tract and gut and mild renal and hepatic dysfunction.
- Several cases of sensorimotor peripheral neuropathies have been associated with chronic dermal exposure to 2,4-D. For acute exposures the usual methods of gut and skin contamination (lavage, charcoal, cathartic) are recommended in the first several hours. Alkalization of the urine and generous fluid replacement have the added benefit of treating any myoglobinuria present. Monitor metabolic acidosis, hyperthermia, hyperkalemia, myoglobinuria and hepatic/renal dysfunction. for 2,4-dichlorophenoxyacetic acid (2,4-D) and its derivatives
- Gastric lavage if there are no signs of impending convulsions.
- Cautious administration of short-acting anticonvulsant drug if convulsions appear imminent.
- General supportive measures for central nervous system depression.
- If hypotension appears, search vigorously for a contributing cause (e.g. dehydration, electrolyte balance, acidosis, myocardial disturbances and hyperpyrexia).
- As appropriate, treat dehydration, electrolyte disturbances, acidosis, and hyperexia.
- To promote excretion of 2,4-D, initiate alkaline diuresis, as in salicylate poisoning by injecting sodium bicarbonate, intravenously, until the urine pH exceeds 7.5 and then infuse mannitol; renal clearance rises sharply as urine pH rises above 7.5 above pH 8.0, it is said to be 100-fold greater than pH 6.0.
- If cardiac disturbances are suspected, monitor ECG continuously when possible. Prepare to deliver defibrillating shocks in the event of ventricular fibrillation.
- If hypotension intensifies, a trial with a vasopressor drug may be appropriate. Adrenalin (epinephrine) should be avoided because of possible fibrillation.
- If myotonia appears, a trial with quinidine may be helpful.
- Physiotherapy may be necessary for motion disorders associated with peripheral neuritis, myopathy or brain stem dysfunction.

GOSSELIN, SMITH HODGE: Clinical Toxicology of Commercial Products, 5th Ed.

Readily absorbed from the gastrointestinal tract with a plasma half-life of about 2 hours. Most of the dose is excreted in the urine with little appearing in the faeces. Plasma protein binding of bezafibrate is about 94-96%.

Section 5 - FIRE FIGHTING MEASURES				
Vapour Pressure (mmHG):	Negligible			
Upper Explosive Limit (%):	Not available.			
Specific Gravity (water=1):	Not available			
Lower Explosive Limit (%):	Not available			

EXTINGUISHING MEDIA

- Foam
- · Dry chemical powder.
- BCF (where regulations permit).
- Carbon dioxide.
- · Water spray or fog Large fires only.

FIRE FIGHTING

ı

- Alert Emergency Responders and tell them location and nature of hazard.
- Wear breathing apparatus plus protective gloves.
- Prevent, by any means available, spillage from entering drains or water course.
- · Use water delivered as a fine spray to control fire and cool adjacent area.
- DO NOT approach containers suspected to be hot.
- Cool fire exposed containers with water spray from a protected location.
- If safe to do so, remove containers from path of fire.
- Equipment should be thoroughly decontaminated after use.

GENERAL FIRE HAZARDS/HAZARDOUS COMBUSTIBLE PRODUCTS

- Combustible solid which burns but propagates flame with difficulty.
- Avoid generating dust, particularly clouds of dust in a confined or unventilated space as dusts may form an explosive
 mixture with air, and any source of ignition, i.e. flame or spark, will cause fire or explosion. Dust clouds generated by the
 fine grinding of the solid are a particular hazard; accumulations of fine dust may burn rapidly and fiercely if ignited.
- Dry dust can be charged electrostatically by turbulence, pneumatic transport, pouring, in exhaust ducts and during transport.
- Build-up of electrostatic charge may be prevented by bonding and grounding.
- Powder handling equipment such as dust collectors, dryers and mills may require additional protection measures such as explosion venting.

Combustion products include: carbon monoxide (CO), carbon dioxide (CO2), hydrogen chloride, phosgene, nitrogen oxides (NOx), other pyrolysis products typical of burning organic material.

May emit poisonous fumes. May emit corrosive fumes.

FIRE INCOMPATIBILITY

■ Avoid contamination with oxidizing agents i.e. nitrates, oxidizing acids, chlorine bleaches, pool chlorine etc. as ignition may result.

PERSONAL PROTECTION

Glasses:

Chemical goggles.

Gloves:

Respirator: Particulate

Section 6 - ACCIDENTAL RELEASE MEASURES

MINOR SPILLS

- WIINOR SPILLS
- Clean up waste regularly and abnormal spills immediately.
- · Avoid breathing dust and contact with skin and eyes.
- · Wear protective clothing, gloves, safety glasses and dust respirator.
- Use dry clean up procedures and avoid generating dust.
- Vacuum up or sweep up. NOTE: Vacuum cleaner must be fitted with an exhaust micro filter (HEPA type) (consider explosion-proof machines designed to be grounded during storage and use).
- Dampen with water to prevent dusting before sweeping.
- Place in suitable containers for disposal.

MAJOR SPILLS

- Moderate hazard.
- CAUTION: Advise personnel in area.
- · Alert Emergency Responders and tell them location and nature of hazard.
- · Control personal contact by wearing protective clothing.
- Prevent, by any means available, spillage from entering drains or water courses.
- Recover product wherever possible.
- IF DRY: Use dry clean up procedures and avoid generating dust. Collect residues and place in sealed plastic bags or other
 containers for disposal. IF WET: Vacuum/shovel up and place in labelled containers for disposal.
- ALWAYS: Wash area down with large amounts of water and prevent runoff into drains.
- · If contamination of drains or waterways occurs, advise emergency services.

ACUTE EXPOSURE GUIDELINE LEVELS (AEGL) (in ppm)

AEGL 1: The airborne concentration of a substance above which it is predicted that the general population, including susceptible individuals, could experience notable discomfort, irritation, or certain asymptomatic nonsensory effects. However, the effects are not disabling and are transient and reversible upon cessation of exposure.

AEGL 2: The airborne concentration of a substance above which it is predicted that the general population, including susceptible individuals, could experience irreversible or other serious, long-lasting adverse health effects or an impaired ability to escape.

AEGL 3: The airborne concentration of a substance above which it is predicted that the general population, including susceptible individuals, could

Section 7 - HANDLING AND STORAGE

PROCEDURE FOR HANDLING

- · Avoid all personal contact, including inhalation.
- Wear protective clothing when risk of exposure occurs.
- · Use in a well-ventilated area.
- Prevent concentration in hollows and sumps.
- DO NOT enter confined spaces until atmosphere has been checked.
- DO NOT allow material to contact humans, exposed food or food utensils.
- Avoid contact with incompatible materials.
- · When handling, DO NOT eat, drink or smoke.
- · Keep containers securely sealed when not in use.
- · Avoid physical damage to containers.
- Always wash hands with soap and water after handling.
- · Work clothes should be laundered separately.
- · Launder contaminated clothing before re-use.
- · Use good occupational work practice.
- Observe manufacturer's storing and handling recommendations.
- Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions are maintained.

Empty containers may contain residual dust which has the potential to accumulate following settling. Such dusts may explode in the presence of an appropriate ignition source.

- · Do NOT cut, drill, grind or weld such containers
- In addition ensure such activity is not performed near full, partially empty or empty containers without appropriate workplace safety authorisation or permit.

RECOMMENDED STORAGE METHODS

- Glass container.
- Packaging as recommended by manufacturer.
- Check that containers are clearly labelled.
- · Tamper-proof containers.
- Polyethylene or polypropylene containers.
- Metal drum with sealed plastic liner.

STORAGE REQUIREMENTS

- .
- Store in original containers.
- Keep containers securely sealed.
- Store in a cool, dry, well-ventilated area.
- Store away from incompatible materials and foodstuff containers.
- Protect containers against physical damage and check regularly for leaks.
- Observe manufacturer's storing and handling recommendations.

SAFE STORAGE WITH OTHER CLASSIFIED CHEMICALS

- X: Must not be stored together
- O: May be stored together with specific preventions
- +: May be stored together

Section 8 - EXPOSURE CONTROLS / PERSONAL PROTECTION

EXPOSURE CONTROLS

The following materials had no OELs on our records

• bezafibrate: CAS:41859-67-0

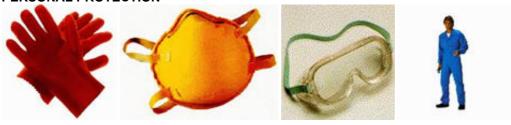
MATERIAL DATA

BEZAFIBRATE:

■ It is the goal of the ACGIH (and other Agencies) to recommend TLVs (or their equivalent) for all substances for which there is evidence of health effects at airborne concentrations encountered in the workplace.

At this time no TLV has been established, even though this material may produce adverse health effects (as evidenced in animal experiments or clinical experience). Airborne concentrations must be maintained as low as is practically possible and occupational exposure must be kept to a minimum.

NOTE: The ACGIH occupational exposure standard for Particles Not Otherwise Specified (P.N.O.S) does NOT apply.


Sensory irritants are chemicals that produce temporary and undesirable side-effects on the eyes, nose or throat. Historically occupational exposure standards for these irritants have been based on observation of workers' responses to various airborne concentrations. Present day expectations require that nearly every individual should be protected against even minor sensory irritation and exposure standards are established using uncertainty factors or safety factors of 5 to 10 or more. On occasion

animal no-observable-effect-levels (NOEL) are used to determine these limits where human results are unavailable. An additional approach, typically used by the TLV committee (USA) in determining respiratory standards for this group of chemicals, has been to assign ceiling values (TLV C) to rapidly acting irritants and to assign short-term exposure limits (TLV STELs) when the weight of evidence from irritation, bioaccumulation and other endpoints combine to warrant such a limit. In contrast the MAK Commission (Germany) uses a five-category system based on intensive odour, local irritation, and elimination half-life. However this system is being replaced to be consistent with the European Union (EU) Scientific Committee for Occupational Exposure Limits (SCOEL); this is more closely allied to that of the USA. OSHA (USA) concluded that exposure to sensory irritants can:

- cause inflammation
- · cause increased susceptibility to other irritants and infectious agents
- · lead to permanent injury or dysfunction
- · permit greater absorption of hazardous substances and
- · acclimate the worker to the irritant warning properties of these substances thus increasing the risk of overexposure.

Airborne particulate or vapor must be kept to levels as low as is practicably achievable given access to modern engineering controls and monitoring hardware. Biologically active compounds may produce idiosyncratic effects which are entirely unpredictable on the basis of literature searches and prior clinical experience (both recent and past).

PERSONAL PROTECTION

Consult your EHS staff for recommendations

EYE

■ When handling very small quantities of the material eye protection may not be required.

For laboratory, larger scale or bulk handling or where regular exposure in an occupational setting occurs:

- · Chemical goggles
- · Face shield. Full face shield may be required for supplementary but never for primary protection of eyes
- Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lens or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59]

HANDS/FEET

■ NOTE: The material may produce skin sensitization in predisposed individuals. Care must be taken, when removing gloves and other protective equipment, to avoid all possible skin contact.

Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include: such as:

- · frequency and duration of contact,
- · chemical resistance of glove material,
- glove thickness and
- dexterity

Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739).

- When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374) is recommended.
- When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374) is recommended.
- Contaminated gloves should be replaced.

Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.

- Rubber gloves (nitrile or low-protein, powder-free latex). Employees allergic to latex gloves should use nitrile gloves in preference.
- Double gloving should be considered.
- PVC gloves.
- Protective shoe covers.
- Head covering.

Experience indicates that the following polymers are suitable as glove materials for protection against undissolved, dry solids, where abrasive particles are not present.

- polychloroprene
- nitrile rubber
- · butyl rubber
- fluorocaoutchouc
- · polyvinyl chloride

Gloves should be examined for wear and/ or degradation constantly.

OTHER

- For quantities up to 500 grams a laboratory coat may be suitable.
- For quantities up to 1 kilogram a disposable laboratory coat or coverall of low permeability is recommended. Coveralls should be buttoned at collar and cuffs.
- For quantities over 1 kilogram and manufacturing operations, wear disposable coverall of low permeability and disposable shoe covers.
- For manufacturing operations, air-supplied full body suits may be required for the provision of advanced respiratory protection.
- Eye wash unit.
- Ensure there is ready access to an emergency shower.

- For Emergencies: Vinyl suit
- Respirators may be necessary when engineering and administrative controls do not adequately prevent exposures.
- The decision to use respiratory protection should be based on professional judgment that takes into account toxicity information, exposure measurement data, and frequency and likelihood of the worker's exposure ensure users are not subject to high thermal loads which may result in heat stress or distress due to personal protective equipment (powered, positive flow, full face apparatus may be an option).
- Published occupational exposure limits, where they exist, will assist in determining the adequacy of the selected respiratory These may be government mandated or vendor recommended.
- Certified respirators will be useful for protecting workers from inhalation of particulates when properly selected and fit tested as part of a complete respiratory protection program.
- Use approved positive flow mask if significant quantities of dust becomes airborne.
- Try to avoid creating dust conditions.

RESPIRATOR

Protection Factor	Half-Face Respirator	Full-Face Respirator	Powered Air Respirator
10 x PEL	P1	-	PAPR-P1
	Air-line*	-	-
50 x PEL	Air-line**	P2	PAPR-P2
100 x PEL	-	P3	-
		Air-line*	-
100+ x PEL	-	Air-line**	PAPR-P3

* - Negative pressure demand ** - Continuous flow

Explanation of Respirator Codes:

Class 1 low to medium absorption capacity filters.

Class 2 medium absorption capacity filters.

Class 3 high absorption capacity filters.

PAPR Powered Air Purifying Respirator (positive pressure) cartridge.

Type A for use against certain organic gases and vapors.

Type AX for use against low boiling point organic compounds (less than 65°C).

Type B for use against certain inorganic gases and other acid gases and vapors.

Type E for use against sulfur dioxide and other acid gases and vapors.

Type K for use against ammonia and organic ammonia derivatives

Class P1 intended for use against mechanically generated particulates of sizes most commonly encountered in industry, e.g. asbestos, silica.

Class P2 intended for use against both mechanically and thermally generated particulates, e.g. metal fume.

Class P3 intended for use against all particulates containing highly toxic materials, e.g. beryllium.

The local concentration of material, quantity and conditions of use determine the type of personal protective equipment

Use appropriate NIOSH-certified respirator based on informed professional judgement. In conditions where no reasonable estimate of exposure can be made, assume the exposure is in a concentration IDLH and use NIOSH-certified full face pressure demand SCBA with a minimum service life of 30 minutes, or a combination full facepiece pressure demand SAR with auxiliary self-contained air supply. Respirators provided only for escape from IDLH atmospheres shall be NIOSH-certified for escape from the atmosphere in which they will be used.

ENGINEERING CONTROLS

■ Enclosed local exhaust ventilation is required at points of dust, fume or vapor generation.

HEPA terminated local exhaust ventilation should be considered at point of generation of dust, fumes or vapors.

Barrier protection or laminar flow cabinets should be considered for laboratory scale handling.

The need for respiratory protection should also be assessed where incidental or accidental exposure is anticipated: Dependent on levels of contamination, PAPR, full face air purifying devices with P2 or P3 filters or air supplied respirators should be evaluated

Fume-hoods and other open-face containment devices are acceptable when face velocities of at least 1 m/s (200 feet/minute) are achieved. Partitions, barriers, and other partial containment technologies are required to prevent migration of the material to uncontrolled areas. For non-routine emergencies maximum local and general exhaust are necessary. Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to effectively remove the contaminant.

	Type of Contaminant:	Air Speed:
	solvent, vapors, etc. evaporating from tank (in still air)	0.25-0.5 m/s (50-100 f/min.)
	aerosols, fumes from pouring operations, intermittent container filling, low speed conveyer transfers (released at low velocity into zone of active generation)	0.5-1 m/s (100-200 f/min.)
	direct spray, drum filling, conveyer loading, crusher dusts, gas discharge (active generation into zone of rapid air motion) Within each range the appropriate value depends on:	1-2.5 m/s (200-500 f/min.)
	Lower end of the range	Upper end of the range
3	1: Room air currents minimal or favourable to capture	1: Disturbing room air currents
	2: Contaminants of low toxicity or of nuisance value only.	2: Contaminants of high toxicity
	3: Intermittent, low production.	3: High production, heavy use
	4: Large hood or large air mass in motion	4: Small hood-local control only
	Simple theory shows that air velocity falls rapidly with distant	are away from the opening of a simple extraction nine. Velocity

Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 1-2.5 m/s (200-500 f/min.) for extraction of gases discharged 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used.

Section 9 - PHYSICAL AND CHEMICAL PROPERTIES

PHYSICAL PROPERTIES

Solid.

Does not mix with water.

State	Divided solid	Molecular Weight	361.8
Melting Range (°F)	311- 312.8; 186	Viscosity	Not Applicable
Boiling Range (°F)	Not available	Solubility in water (g/L)	Partly miscible
Flash Point (°F)	>230	pH (1% solution)	Not applicable
Decomposition Temp (°F)	Not available.	pH (as supplied)	Not applicable
Autoignition Temp (°F)	Not available	Vapour Pressure (mmHG)	Negligible
Upper Explosive Limit (%)	Not available.	Specific Gravity (water=1)	Not available
Lower Explosive Limit (%)	Not available	Relative Vapor Density (air=1)	Not Applicable
Volatile Component (%vol)	Negligible	Evaporation Rate	Not applicable

APPEARANCE

Crystalline solid; does not mix well with water.

Section 10 - CHEMICAL STABILITY

CONDITIONS CONTRIBUTING TO INSTABILITY

- Presence of incompatible materials.
- Product is considered stable.
- Hazardous polymerization will not occur.

STORAGE INCOMPATIBILITY

■ Avoid reaction with oxidizing agents.

For incompatible materials - refer to Section 7 - Handling and Storage.

Section 11 - TOXICOLOGICAL INFORMATION

bezafibrate

TOXICITY AND IRRITATION

unless otherwise specified data extracted from RTECS - Register of Toxic Effects of Chemical Substances.

IRRITATION Oral (rat) LD50: 1082 mg/kg Nil Reported

Intraperitoneal (rat) LD50: 505 mg/kg Subcutaneous (rat) LD50: 1580 mg/kg Oral (mouse) LD50: 723 mg/kg

Intraperitoneal (mouse) LD50: 500 mg/kg

Subcutaneous (mouse) LD50: 1644 mg/kg

■ Contact allergies quickly manifest themselves as contact eczema, more rarely as urticaria or Quincke's edema. The pathogenesis of contact eczema involves a cell-mediated (T lymphocytes) immune reaction of the delayed type. Other allergic skin reactions, e.g. contact urticaria, involve antibody-mediated immune reactions. The significance of the contact allergen is not simply determined by its sensitization potential: the distribution of the substance and the opportunities for contact with it are equally important. A weakly sensitizing substance which is widely distributed can be a more important allergen than one with stronger sensitizing potential with which few individuals come into contact. From a clinical point of view, substances are noteworthy if they produce an allergic test reaction in more than 1% of the persons tested.

Fibrates are a class of amphiphilic carboxylic acids. They are used for a range of metabolic disorders, mainly hypercholesterolaemia (high cholesterol), and are therefore hypolipidaemic agents.

Fibrates are agonists of the PPAR-a receptor in muscle, liver, and other tissues. Activation of PPAR-a signaling results in:

- Increased beta-oxidation in the liver
- · Decreased hepatic triglyceride secretion
- Increased lipoprotein lipase activity, and thus increased VLDL (Very Low Density Lipoprotein) clearance
- Increased HDL (High Density Lipoprotein)
- · Increased clearance of remnant particles
- Most fibrates can cause mild stomach upset and myopathy (muscle pain with CPK elevations). Since fibrates increase the cholesterol content of bile, they increase the risk for gallstones.

In combination with statin drugs, fibrates cause an increased risk of rhabdomyolysis, idiosyncratic destruction of muscle tissue, leading to renal failure. A powerful statin drug, cerivastatin (Lipobay), was withdrawn because of this complication. The less lipophilic statins are less prone to cause this reaction, and are probably safer when combined with fibrates.

Fibrates are structurally and pharmacologically related to the thiazolidinediones, a novel class of anti-diabetic drugs that also

act on PPARs (more specifically PPARy.

Adverse clinical effects have been reported for 7% of the exposures to thiazolidinediones, the most frequent of which were hypoglycemia (2%), hyperglycaemia (1%), and drowsiness (1%). Oedema is an adverse event associated with thiazolidinedione therapy. The potential for mild-to-moderate peripheral oedema

Oedema is an adverse event associated with thiazolidinedione therapy. The potential for mild-to-moderate peripheral oedema with thiazolidinedione is known, especially in patients who have heart failure or use insulin.

Vary rarely, reports of new onset or worsening (diabetic) macular oedema with decreased visual acuity have been reported with the use of thiazolidinediones.

Subcutaneous benign adipose tissue tumours (lipomas) have been observed in rats treated with thiazolidinedione drugs, and are probably related to the pharmacodynamic activity of this drug class. Urinary bladder tumours were probably secondary to formation of urinary calculi, and are unlikely to pose a carcinogenic risk in humans.

Sensory change involving peripheral nervous system, altered sleep time, convulsions, chronic pulmonary oedema, respiratory depression, gastrointestinal changes, gastrointestinal tumours, liver changes, liver tumours, changes in tubules, specific developmental abnormalities (musculoskeletal system), effects on newborn recorded.

Section 12 - ECOLOGICAL INFORMATION

Refer to data for ingredients, which follows:

BEZAFIBRATE:

■ for chlorophenoxy herbicides:

Environmental fate:

Residues of chlorophenoxy herbicides in the environment are the consequence of the direct application of these compounds to agricultural and non-agricultural areas. Biodegradation is the primary route of elimination from the environment; photolysis and hydrolysis also contribute to their removal.

The chlorophenoxy herbicides are considered to have only marginal potential for leaching to groundwater In basic waters, phenoxy herbicide esters are hydrolysed to the anionic forms; in acidic waters, photodegradation or vaporisation predominates, depending on the ester.

Chlorophenoxy herbicides may be transported in the atmosphere in the form of droplets, vapour, or powder following application by spraying.

Chlorophenoxy herbicides may be present in food as a result of their direct application to crops; however, concentrations are normally low.

- The group of acidic herbicides, including the phenoxy acids, possess functional groups that ionize in aqueous systems yielding pKa values of less than 4. The behavior of these materials is closely correlated with their acid character. The most significant factor with respect to soil mobility is the organic content of the soil which readily absorbs these compounds. Furthermore in acidic systems these compounds are also absorbed by clay particles. The esters and ethers are expected to behave differently from the acid forms although hydrolysis may influence subsequent binding. In general the esters and ethers are considered non-persistent in the environment.
- DO NOT discharge into sewer or waterways.

Ecotoxicity

Ingredient Persistence: Water/Soil Persistence: Air Bioaccumulation Mobility bezafibrate HIGH Bioaccumulation LOW MED

Section 13 - DISPOSAL CONSIDERATIONS

US EPA Waste Number & Descriptions

B. Component Waste Numbers

When bezafibrate is present as a solid waste as a discarded commercial chemical product, off-specification species, as a container residue, or a spill residue, use EPA waste number U240 (waste code T).

For discarded unused formulations containing bezafibrate use hazardous waste number F027

When bezafibrate is present as a solid waste as a discarded commercial chemical product, off-specification species, as a container residue, or a spill residue, use EPA waste number U240 (waste code T).

For discarded unused formulations containing bezafibrate use hazardous waste number F027

When bezafibrate is present as a solid waste as a discarded commercial chemical product, off-specification species, as a container residue, or a spill residue, use EPA waste number U240 (waste code T).

For discarded unused formulations containing bezafibrate use hazardous waste number F027

When bezafibrate is present as a solid waste as a discarded commercial chemical product, off-specification species, as a container residue, or a spill residue, use EPA waste number U240 (waste code T).

For discarded unused formulations containing bezafibrate use hazardous waste number F027

When bezafibrate is present as a solid waste as a discarded commercial chemical product, off-specification species, as a container residue, or a spill residue, use EPA waste number U240 (waste code T).

For discarded unused formulations containing bezafibrate use hazardous waste number F027

When bezafibrate is present as a solid waste as a discarded commercial chemical product, off-specification species, as a container residue, or a spill residue, use EPA waste number U240 (waste code T).

For discarded unused formulations containing bezafibrate use hazardous waste number F027

Disposal Instructions

All waste must be handled in accordance with local, state and federal regulations.

Puncture containers to prevent re-use and bury at an authorized landfill.

Legislation addressing waste disposal requirements may differ by country, state and/ or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked.

A Hierarchy of Controls seems to be common - the user should investigate:

- Reduction
- Reuse
- Recycling
- Disposal (if all else fails)

This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. Shelf life considerations should also be applied in making decisions of this type. Note that properties of a material may change in use, and recycling or reuse may not always be appropriate.

DO NOT allow wash water from cleaning equipment to enter drains. Collect all wash water for treatment before disposal.

- Recycle wherever possible.
- Consult manufacturer for recycling options or consult Waste Management Authority for disposal if no suitable treatment or disposal facility can be identified.

- Dispose of by: Burial in a licensed land-fill or Incineration in a licensed apparatus (after admixture with suitable combustible material)
- Decontaminate empty containers. Observe all label safeguards until containers are cleaned and destroyed.

Section 14 - TRANSPORTATION INFORMATION

NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS: DOT, IATA, IMDG

Section 15 - REGULATORY INFORMATION

No data for bezafibrate (CAS: , 41859-67-0)

Section 16 - OTHER INFORMATION

LIMITED EVIDENCE

- Cumulative effects may result following exposure*.
- May produce discomfort of the eyes*
- Limited evidence of a carcinogenic effect*.
 * (limited evidence).

Reasonable care has been taken in the preparation of this information, but the author makes no warranty of merchantability or any other warranty, expressed or implied, with respect to this information. The author makes no representations and assumes no liability for any direct, incidental or consequential damages resulting from its use. For additional technical information please call our toxicology department on +800 CHEMCALL.

- Classification of the mixture and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references. A list of reference resources used to assist the committee may be found at: www.chemwatch.net/references.
- The (M)SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

This document is copyright. Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH. TEL (+61 3) 9572 4700.

Issue Date: Nov-15-2009 Print Date:Apr-21-2010