Chromium Picolinate

sc-204685

Material Safety Data Sheet

The Power to Questio

Hazard Alert Code Key:

EXTREME

HIGH

MODERATE

LOW

Section 1 - CHEMICAL PRODUCT AND COMPANY IDENTIFICATION

PRODUCT NAME

Chromium Picolinate

STATEMENT OF HAZARDOUS NATURE

CONSIDERED A HAZARDOUS SUBSTANCE ACCORDING TO OSHA 29 CFR 1910.1200.

NFPA

SUPPLIER

Company: Santa Cruz Biotechnology, Inc.

Address:

2145 Delaware Ave Santa Cruz, CA 95060

Telephone: 800.457.3801 or 831.457.3800

Emergency Tel: CHEMWATCH: From within the US and

Canada: 877-715-9305

Emergency Tel: From outside the US and Canada: +800 2436

2255 (1-800-CHEMCALL) or call +613 9573 3112

PRODUCT USE

Chromium(III)-containing, nitrogen heterocyclic acid, metal salt. Dietary supplement. Claimed to reduce body fat, build muscle, reduce cardiovascular disease and the symptoms of diabetes. Thought to act at the insulin receptor.

SYNONYMS

C18-H12-N3-O6-Cr, "2-pyridinecarboxylic acid, chromium salt", "2-pyridinecarboxylic acid, chromium salt", "chromium z-pyridinecarboxylate", "c

Section 2 - HAZARDS IDENTIFICATION

CANADIAN WHMIS SYMBOLS

EMERGENCY OVERVIEW

Limited evidence of a carcinogenic effect. Harmful to aquatic organisms.

POTENTIAL HEALTH EFFECTS
ACUTE HEALTH EFFECTS

SWALLOWED

- Although ingestion is not thought to produce harmful effects, the material may still be damaging to the health of the individual following ingestion, especially where pre-existing organ (e.g. liver, kidney) damage is evident. Present definitions of harmful or toxic substances are generally based on doses producing mortality (death) rather than those producing morbidity (disease, ill-health). Gastrointestinal tract discomfort may produce nausea and vomiting. In an occupational setting however, ingestion of insignificant quantities is not thought to be cause for concern.
- Considered an unlikely route of entry in commercial/industrial environments.
- Exposure to alkylpyridines (including the picolines) may result in an alteration to the heart beat, either speeding it up or slowing it down.

EYE

■ Although the material is not thought to be an irritant, direct contact with the eye may produce transient discomfort characterized by tearing or conjunctival redness (as with windburn).

SKIN

■ The material is not thought to produce adverse health effects or skin irritation following contact (as classified using animal models). Nevertheless, good hygiene practice requires that exposure be kept to a minimum and that suitable gloves be used in an occupational setting.

INHALED

- The material is not thought to produce adverse health effects or irritation of the respiratory tract (as classified using animal models). Nevertheless, good hygiene practice requires that exposure be kept to a minimum and that suitable control measures be used in an occupational setting.
- Persons with impaired respiratory function, airway diseases and conditions such as emphysema or chronic bronchitis, may incur further disability if excessive concentrations of particulate are inhaled.

CHRONIC HEALTH EFFECTS

- There has been concern that this material can cause cancer or mutations, but there is not enough data to make an assessment.
- Principal routes of exposure are usually by skin contact/absorption.

As with any chemical product, contact with unprotected bare skin; inhalation of vapor, mist or dust in work place atmosphere; or ingestion in any form, should be avoided by observing good occupational work practice.

Data from experimental studies indicate that pyridines represent a potential cause of cancer in man. They have also been shown to cross the placental barrier in rats and cause premature delivery, miscarriages and stillbirths. PAs are passed through breast milk. Pyridine has been implicated in the formation of liver cancers.

Prolonged ingestion of amounts >200 micrograms daily may interfere with

the assimilation and metabolism of other nutritionally essential

transition metals and may cause anaemia, hair loss and skin rash.

- -Manufacturer]
- Limited evidence of a carcinogenic effect.

Chromium picolinate produces DNA breakage in cultured cells; the picolinate ligand may faciliate such breakage by enhancing cell uptake of chromium. It has been proposed that following interaction with substances such as Vitamin C, the reaction product may further catalyse reaction with oxygen to generate potent DNA-damaging hydroxyl radicals.

(Vincent, John B. University of Alabama)

■ Chromium(III) is an essential trace mineral. Chronic exposure to chromium(III) irritates the airways, malnourishes the liver and kidneys, causes fluid in the lungs, and adverse effects on white blood cells, and also increases the risk of developing lung cancer. Chromium (VI) can irritate the skin, eyes and airways. Allergic reactions can involve both the skin and airways, and the compounds can diminish taste and smell, discolor the skin and eyes, cause blood disorders and damage the liver, kidneys, digestive tract and lungs. It predisposes humans to cancers of the respiratory tract and digestive system. Ulceration to the skin can occur, and, chromium(VI) is one of the most allergenic substances known.

Section 3 - COMPOSITION / INFORMATION ON INGREDIENTS

HAZARD RATINGS

		Min	Max				
Flammability:	1						
Toxicity:	2						
Body Contact:	0		Min/Nil=0				
Reactivity:	0		Low=1 Moderate=2				
Chronic:	2		High=3 Extreme=4				
NAME				CAS RN	%		
picolinic acid, chromiur	n salt			14639-25-9	>98		

Section 4 - FIRST AID MEASURES

SWALLOWED

- Immediately give a glass of water.
- First aid is not generally required. If in doubt, contact a Poisons Information Center or a doctor.

EYE

- If this product comes in contact with the eves:
- Wash out immediately with fresh running water.
- Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally

lifting the upper and lower lids.

- If pain persists or recurs seek medical attention.
- · Removal of contact lenses after an eye injury should only be undertaken by skilled personnel.

SKIN

- If skin contact occurs:
- · Immediately remove all contaminated clothing, including footwear
- Flush skin and hair with running water (and soap if available).
- · Seek medical attention in event of irritation.

INHALED

- If dust is inhaled, remove from contaminated area.
- · Encourage patient to blow nose to ensure clear passage of breathing.
- If irritation or discomfort persists seek medical attention.

NOTES TO PHYSICIAN

■ Treat symptomatically.

Section 5 - FIRE FIGHTING MEASURES

Upper Explosive Limit (%):	Not available.
Specific Gravity (water=1):	Not available
Lower Explosive Limit (%):	Not available
Relative Vapor Density (air=1):	Not applicable

EXTINGUISHING MEDIA

.

Foam

- · Dry chemical powder.
- BCF (where regulations permit).
- · Carbon dioxide.
- Water spray or fog Large fires only.

FIRE FIGHTING

_

- Use water delivered as a fine spray to control fire and cool adjacent area.
- DO NOT approach containers suspected to be hot.
- Cool fire exposed containers with water spray from a protected location.
- · If safe to do so, remove containers from path of fire.
- Equipment should be thoroughly decontaminated after use.

GENERAL FIRE HAZARDS/HAZARDOUS COMBUSTIBLE PRODUCTS

•

- Solid which exhibits difficult combustion or is difficult to ignite.
- Avoid generating dust, particularly clouds of dust in a confined or unventilated space as dusts may form an explosive
 mixture with air, and any source of ignition, i.e. flame or spark, will cause fire or explosion. Dust clouds generated by the
 fine grinding of the solid are a particular hazard; accumulations of fine dust may burn rapidly and fiercely if ignited.
- Dry dust can be charged electrostatically by turbulence, pneumatic transport, pouring, in exhaust ducts and during transport.
- Build-up of electrostatic charge may be prevented by bonding and grounding.
- Powder handling equipment such as dust collectors, dryers and mills may require additional protection measures such as explosion venting.

Combustion products include: nitrogen oxides (NOx).

FIRE INCOMPATIBILITY

Avoid reaction with oxidizing agents.

PERSONAL PROTECTION

Glasses: Safety Glasses. Gloves: Respirator:

Particulate

Section 6 - ACCIDENTAL RELEASE MEASURES

MINOR SPILLS

...

- Clean up all spills immediately.
- Avoid contact with skin and eyes.
- Wear impervious gloves and safety glasses.
- Use dry clean up procedures and avoid generating dust.
- Sweep up or vacuum up (consider explosion-proof machines designed to be grounded during storage and use).
- Place spilled material in clean, dry, sealable, labeled container.

MAJOR SPILLS

- Clear area of personnel and move upwind.
- Alert Emergency Responders and tell them location and nature of hazard.
- Control personal contact by using protective equipment and dust respirator.

- Prevent spillage from entering drains, sewers or water courses.
- Avoid generating dust.
- · Sweep, shovel up.
- Recover product wherever possible.
- Put residues in labeled plastic bags or other containers for disposal.
- If contamination of drains or waterways occurs, advise emergency services.

ACUTE EXPOSURE GUIDELINE LEVELS (AEGL) (in ppm)

AEGL 1: The airborne concentration of a substance above which it is predicted that the general population, including susceptible individuals, could experience notable discomfort, irritation, or certain asymptomatic nonsensory effects. However, the effects are not disabling and are transient and reversible upon cessation of exposure.

AEGL 2: The airborne concentration of a substance above which it is predicted that the general population, including susceptible individuals, could experience irreversible or other serious, long-lasting adverse health effects or an impaired ability to escape.

AEGL 3: The airborne concentration of a substance above which it is predicted that the general population, including susceptible individuals, could experience life-threatening health effects or death.

Section 7 - HANDLING AND STORAGE

PROCEDURE FOR HANDLING

- .
- · Limit all unnecessary personal contact.
- Wear protective clothing when risk of exposure occurs.
- · Use in a well-ventilated area.
- When handling DO NOT eat, drink or smoke.
- Always wash hands with soap and water after handling.
- Avoid physical damage to containers.
- Use good occupational work practice.
- Observe manufacturer's storing and handling recommendations.

RECOMMENDED STORAGE METHODS

- Polyethylene or polypropylene container.
- · Packing as recommended by manufacturer
- Check all containers are clearly labeled and free from leaks.

STORAGE REQUIREMENTS

- •
- Store in original containers.
- Keep containers securely sealed.
- Store in a cool, dry, well-ventilated area.
- Store away from incompatible materials and foodstuff containers.
- Protect containers against physical damage and check regularly for leaks.
- Observe manufacturer's storing and handling recommendations.

SAFE STORAGE WITH OTHER CLASSIFIED CHEMICALS

- X: Must not be stored together
- O: May be stored together with specific preventions
- +: May be stored together

Section 8 - EXPOSURE CONTROLS / PERSONAL PROTECTION

EXPOSURE CONTROLS

Source	Material	TWA ppm	TWA mg/m³	STEL ppm	STEL mg/m³	Peak ppm	Peak mg/m³	TWA F/CC	Notes
Canada - Northwest Territories Occupational Exposure Limits (English)	picolinic acid, chromium salt (Chromium, Sol. chromic, chromous salts (as Cr))		0.5		0.15				
Canada - Northwest Territories Occupational Exposure Limits (English)	picolinic acid, chromium salt (Chromite ore processing (chromate (as Cr)))		0.05		0.15				
Canada - Ontario Occupational Exposure	picolinic acid, chromium salt (Chromium metal, and divalent and trivalent		0.5						

MATERIAL DATA

PICOLINIC ACID, CHROMIUM SALT:

- Because of the low toxicity of chromium metal and its divalent/trivalent compounds the recommended TLV is thought to minimize the potential of pulmonary disease and other toxic effects. Some jurisdictions require that health surveillance be carried on workers occupationally exposed to inorganic chromium. Such surveillance should emphasize
- · demography, occupational and medical history and health advice
- physical examination with emphasis on the respiratory system and skin
- weekly skin inspection of hands and forearms by a "responsible person"

PERSONAL PROTECTION

Consult your EHS staff for recommendations

EYE

•

- · Safety glasses.
- · Safety glasses with side shields.
- Chemical goggles.
- Contact lenses pose a special hazard; soft lenses may absorb irritants and all lenses concentrate them.

HANDS/FEET

■ Wear general protective gloves, e.g.. light weight rubber gloves.

OTHER

- Overalls.
- · Impervious protective clothing
- Eyewash unit.

RESPIRATOR

•

Protection Factor	Half-Face Respirator	Full-Face Respirator	Powered Air Respirator
10 x PEL	P1	-	PAPR-P1
	Air-line*	-	-
50 x PEL	Air-line**	P2	PAPR-P2
100 x PEL	-	P3	-
		Air-line*	-
100+ x PEL	-	Air-line**	PAPR-P3

^{* -} Negative pressure demand ** - Continuous flow

Explanation of Respirator Codes:

Class 1 low to medium absorption capacity filters.

Class 2 medium absorption capacity filters.

Class 3 high absorption capacity filters.

PAPR Powered Air Purifying Respirator (positive pressure) cartridge.

Type A for use against certain organic gases and vapors.

Type AX for use against low boiling point organic compounds (less than 65°C).

Type B for use against certain inorganic gases and other acid gases and vapors.

Type E for use against sulfur dioxide and other acid gases and vapors.

Type K for use against ammonia and organic ammonia derivatives

Class P1 intended for use against mechanically generated particulates of sizes most commonly encountered in industry, e.g. asbestos, silica.

Class P2 intended for use against both mechanically and thermally generated particulates, e.g. metal fume.

Class P3 intended for use against all particulates containing highly toxic materials, e.g. beryllium.

The local concentration of material, quantity and conditions of use determine the type of personal protective equipment required.

Use appropriate NIOSH-certified respirator based on informed professional judgement. In conditions where no reasonable estimate of exposure can be made, assume the exposure is in a concentration IDLH and use NIOSH-certified full face pressure demand SCBA with a minimum service life of 30 minutes, or a combination full facepiece pressure demand SAR with auxiliary self-contained air supply. Respirators provided only for escape from IDLH atmospheres shall be NIOSH-certified for escape from the atmosphere in which they will be used.

ENGINEERING CONTROLS

■ Local exhaust ventilation usually required. If risk of overexposure exists, wear an approved respirator. Correct fit is essential to obtain adequate protection an approved self contained breathing apparatus (SCBA) may be required in some situations. Provide adequate ventilation in warehouse or closed storage area.

Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to effectively remove the contaminant.

Type of Contaminant: Air Speed:

solvent, vapors, degreasing etc., evaporating from tank (in still 0.25-0.5 m/s (50-100 f/min.) air).

aerosols, fumes from pouring operations, intermittent

container filling, low speed conveyer transfers, welding, spray drift, plating acid fumes, pickling (released at low velocity into zone of active generation)

0.5-1 m/s (100-200 f/min.)

direct spray, spray painting in shallow booths, drum filling, conveyer loading, crusher dusts, gas discharge (active generation into zone of rapid air motion)

1-2.5 m/s (200-500 f/min.)

grinding, abrasive blasting, tumbling, high speed wheel generated dusts (released at high initial velocity into zone of very high rapid air motion).

2.5-10 m/s (500-2000 f/min.)

Within each range the appropriate value depends on:

Lower end of the range 1: Room air currents minimal or favorable to capture

1: Disturbing room air currents

Upper end of the range

2: Contaminants of low toxicity or of nuisance value only.

2: Contaminants of high toxicity

3: Intermittent, low production.

4: Large hood or large air mass in motion

3: High production, heavy use

4: Small hood-local control only Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity

generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 1-2 m/s (200-400 f/min) for extraction of solvents generated in a tank 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used.

Section 9 - PHYSICAL AND CHEMICAL PROPERTIES

PHYSICAL PROPERTIES

Does not mix with water.

State	Divided solid	Molecular Weight	418.3
Melting Range (°F)	278.6 (free acid)	Boiling Range (°F)	Not applicable
Solubility in water (g/L)	Immiscible	Flash Point (°F)	Not applicable
pH (1% solution)	Not available	Decomposition Temp (°F)	Not available.
pH (as supplied)	Not applicable	Autoignition Temp (°F)	Not available
Vapour Pressure (mmHG)	Negligible	Upper Explosive Limit (%)	Not available.
Specific Gravity (water=1)	Not available	Lower Explosive Limit (%)	Not available
Relative Vapor Density (air=1)	Not applicable	Volatile Component (%vol)	Negligible
Evaporation Rate	Not applicable		

APPEARANCE

Reddish powder. Practically insoluble in water and organic solvents. Faint characteristic odour.

Section 10 - CHEMICAL STABILITY

CONDITIONS CONTRIBUTING TO INSTABILITY

- Presence of incompatible materials.
- Product is considered stable.
- Hazardous polymerization will not occur.

STORAGE INCOMPATIBILITY

■ Avoid reaction with oxidizing agents, bases and strong reducing agents. Avoid strong acids.

For incompatible materials - refer to Section 7 - Handling and Storage.

Section 11 - TOXICOLOGICAL INFORMATION

picolinic acid, chromium salt

TOXICITY AND IRRITATION

unless otherwise specified data extracted from RTECS - Register of Toxic Effects of Chemical Substances.

IRRITATION

TDLo (human): >2000 mg/kg * Nil Reported

TDLo (man): 8571 ng/kg/90 d - I

Hallucinations recorded.

* Manufacturer

CARCINOGEN

CHROMIUM COMPOUNDS

US Environmental Defense Scorecard Suspected Carcinogens Reference(s) HAZMAP, P65-MC

Section 12 - ECOLOGICAL INFORMATION

Refer to data for ingredients, which follows: PICOLINIC ACID, CHROMIUM SALT:

- DO NOT discharge into sewer or waterways.
- Chromium in the oxidation state +3 (the trivalent form) is poorly absorbed by cells found in microorganisms, plants and animals. Chromate anions (CrO4-, oxidation state +6, the hexavalent form) are readily transported into cells and toxicity is closely linked to the higher oxidation state.

Chromium Ecotoxicology:

Toxicity in Aquatic Organisms:

Chromium is harmful to aquatic organisms in very low concentrations. Fish food organisms are very sensitive to low levels of chromium. Chromium is toxic to fish although less so in warm water. Marked decreases in toxicity are found with increasing pH or water hardness; changes in salinity have little if any effect. Chromium appears to make fish more susceptible to infection. High concentrations can damage and/or accumulate in various fish tissues and in invertebrates such as snails and worms. Reproduction of Daphnia is affected by exposure to 0.01 mg/kg hexavalent chromium/litre

Toxicity of chromium in fresh-water organisms (50% mortality)

romony or ornorman in	. oon mater organionie (oo	, o o ,		
Compound	Category	Exposure	Toxicity Range (mg/litre)	Most sensitive species
hexavalent chrome	invertebrate	acute	0.067-59.9	scud
		long-term	-	-
	vertebrate	acute	17.6-249	fathead minnow
		long-term	0.265-2.0	rainbow trout
trivalent chrome	invertebrate	acute	2.0-64.0	cladoceran
		long-term	0.066	cladoceran
	vertebrate	acute	33.0-71.9	guppy
	invertebrate	long-term	1.0	fathead minnow

^{*} from Environmental Health Criteria 61: WHO Publication.

Toxicity in Microorganisms:

In general, toxicity for most microorganisms occurs in the range of 0.05-5 mg chromium/kg of medium. Trivalent chromium is less toxic than the hexavalent form. The main signs of toxicity are inhibition of growth and the inhibition of various metabolic processes such as photosynthesis or protein synthesis. Gram-negative soil bacteria are generally more sensitive to hexavalent chromium (1-12 mg/kg) than the gram-positive types. Toxicity to trivalent chromium is not observed at similar levels. The toxicity of low levels of hexavalent chromium (1 mg/kg) indicates that soil microbial transformation, such as nitrification, may be affected. Chromium should not be introduced to municipal sewage treatment facilities.

Toxicity in Plants: Chromium in high concentrations can be toxic for plants. The main feature of chromium intoxication is chlorosis, which is similar to iron deficiency. Chromium affects carbohydrate metabolism and leaf chlorophyll concentration decreases with hexavalent chromium concentration (0.01-1 mg/l). The hexavalent form appears to more toxic than the trivalent species.

Biological half-life: The elimination curve for chromium, as measured by whole-body counting, has an exponential form. In rats, three different components of the curve have been identified, with half-lives of 0.5, 5.9 and 83.4 days, respectively.

Water Standards: Chromium is identified as a hazardous substance in the Federal (U.S.) Water Pollution Control Act and further regulated by Clean Air Water Act Amendments (US). These regulations apply to discharge. The US Primary drinking water Maximum Contaminant Level (MCL), for chromium, is 0.05 mg/l (total chromium).

Section 13 - DISPOSAL CONSIDERATIONS

US EPA Waste Number & Descriptions

A. General Product Information

Toxicity characteristic: use EPA hazardous waste number D007 (waste code E) if this substance, in a solid waste, produces an extract containing greater than 5 mg/L of chromium.

Disposal Instructions

All waste must be handled in accordance with local, state and federal regulations.

- Consult manufacturer for recycling options and recycle where possible .
- Consult Waste Management Authority for disposal.
- Incinerate residue at an approved site.
- Recycle containers where possible, or dispose of in an authorized landfill.

After mixing with a combustible solvent the material may be burnt in a

chemical incinerator equipped with an afterburner and scrubber. [Manfr.]

Section 14 - TRANSPORTATION INFORMATION

NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS: DOT. IATA. IMDG

Section 15 - REGULATORY INFORMATION

picolinic acid, chromium salt (CAS: 14639-25-9) is found on the following regulatory lists;

Canada - Northwest Territories Occupational Exposure Limits (English)","US - California Occupational Safety and Health Regulations (CAL/OSHA) - Hazardous Substances List", "US - California Toxic Air Contaminant List Category II", "US -Regulations (CAL/OSHA) - Hazardous Substances List", "US - California Toxic Air Contaminant List Category II", "US - Massachusetts Oil & Hazardous Material List", "US - Vermont Hazardous Constituents", "US - Washington Dangerous waste constituents list", "US Clean Air Act - Hazardous Air Pollutants", "US CWA (Clean Water Act) - Priority Pollutants", "US CWA (Clean Water Act) - Toxic Pollutants", "US List of Lists - Consolidated List of Chemicals Subject to the Emergency Planning and Community Right-to-Know Act (EPCRA) and Section 112(r) of the Clean Air Act", "US RCRA (Resource Conservation & Recovery Act) - Appendix IX to Part 264 Ground-Water Monitoring List 1", "US RCRA (Resource Conservation & Recovery Act) - Hazardous Constituents - Appendix VIII to 40 CFR 261", "US RCRA (Resource Conservation & Recovery Act) - List of Hazardous Inorganic and Organic Constituents 1"

Section 16 - OTHER INFORMATION

LIMITED EVIDENCE

- Ingestion may produce health damage*.
- Cumulative effects may result following exposure*.
- * (limited evidence).

Reasonable care has been taken in the preparation of this information, but the author makes no warranty of merchantability or any other warranty, expressed or implied, with respect to this information. The author makes no representations and assumes no liability for any direct, incidental or consequential damages resulting from its use. For additional technical information please call our toxicology department on +800 CHEMCALL.

- Classification of the mixture and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references.

 A list of reference resources used to assist the committee may be found at: www.chemwatch.net/references.
- The (M)SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

This document is copyright. Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH. TEL (+61 3) 9572 4700.

Issue Date: Mar-30-2006 Print Date:Apr-21-2010