Darifenacin Hydrobromide

Company: Santa Cruz Biotechnology, Inc. Address: 2145 Delaware Ave Santa Cruz, CA 95060 Telephone: 800.457.3801 or 831.457.3800 Emergency Tel: CHEMWATCH: From within the US and Canada: 877-715-9305 Emergency Tel: From outside the US and Canada: +800 2436 2255 (1-800-CHEMCALL) or call +613 9573 3112

PRODUCT USE

Darifenacin hydrobromide is used in the treatment of an overactive bladder with symptoms of urge urinary incontinence, urgency and frequency. It is in a class of medication known as antimuscarinics. It relaxes the muscle in the wall of the bladder called the detruser muscle. It does this by preventing acetylcholine from acting on the muscarinic receptors Darifenacin is a competitive muscarinic receptor antagonist. Muscarinic receptors play an important role in several major cholinergically mediated functions, including contractions of the urinary bladder smooth muscle and stimulation of salivary secretion. In vitro studies using human recombinant muscarinic receptors (9- and 12-fold greater affinity for M3 compared to M1 and M5, respectively, and 59-fold greater affinity for M3 compared to both M2 and M4). M3 receptors are involved in contraction of human bladder and gastrointestinal smooth muscle, saliva production, and iris sphincter function.

SYNONYMS

C28-H30-N2-O2.HBr, "(S)-2-(1-(2-(2, 3-dihydrobenzofuran-6-yl)ethyl)pyrrolidin-3-yl)-2, 2-", "diphenylacetamide hydrobromide", "(S)-2-(1-(2-(2, 3-dihydrobenzofuran-6-yl)ethyl)pyrrolidin-3-yl)-2, 2-", "diphenylacetamide hydrobromide", "2-[(3S)-1-[2-(2, 3-dihydrobenzofuran-5-yl)ethyl]pyrrolidin-3-yl]-2, 2-", "diphenyl-acetamide hydrobromide", "3-pyrrolidineacetamide, 1-(2-(2, 3-dihydrob-5-benzofuranyl)ethyl)-alpha, ", "alpha-diphenyl-, monohydrobromide, (S)-", "3-pyrrolidineacetamide, 1-(2-(2, 3-dihydrob-5-benzofuranyl)ethyl)-alpha, ", "alpha-diphenyl-, monohydrobromide, (S)-", Enablex, "UK 88525-04 hydrobromide", Darifenaxin, "antimuscarinic/ anticholinergic"

Section 2 - HAZARDS IDENTIFICATION

CANADIAN WHMIS SYMBOLS

EMERGENCY OVERVIEW

RISK

Harmful by inhalation and if swallowed. Irritating to eyes, respiratory system and skin. Harmful to aquatic organisms.

POTENTIAL HEALTH EFFECTS

ACUTE HEALTH EFFECTS

SWALLOWED

 Accidental ingestion of the material may be harmful; animal experiments indicate that ingestion of less than 150 gram may be fatal or may produce serious damage to the health of the individual.
 EYE

This material can cause eye irritation and damage in some persons.

Anticholinergic eye drops can cause stinging, dryness, redness, itch, dilated pupils, and loss of focus with blurred vision. Pupil Reflexes may be lost or diminished for 3 days.

SKIN

- Skin contact with the material may produce toxic effects; systemic effectsmay result following absorption.
- This material can cause inflammation of the skin oncontact in some persons.
- The material may accentuate any pre-existing dermatitis condition.
- Open cuts, abraded or irritated skin should not be exposed to this material.
- Entry into the blood-stream, through, for example, cuts, abrasions or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected.

INHALED

Inhalation of dusts, generated by the material, during the course of normalhandling, may be harmful.

The material can cause respiratory irritation in some persons. The body's response to such irritation can cause further lung damage.

■ Persons with impaired respiratory function, airway diseases and conditions such as emphysema or chronic bronchitis, may incur further disability if excessive concentrations of particulate are inhaled.

CHRONIC HEALTH EFFECTS

• Long-term exposure to respiratory irritants may result in disease of the airways involving difficult breathing and related systemic problems.

Limited evidence suggests that repeated or long-term occupational exposure may produce cumulative health effects involving organs or biochemical systems.

There is some evidence that human exposure to the material may result in developmental toxicity. This evidence is based on animal studies where effects have been observed in the absence of marked maternal toxicity, or at around the same dose levels as other toxic effects but which are not secondary non-specific consequences of the other toxic effects.

Long term exposure to high dust concentrations may cause changes in lung function i.e. pneumoconiosis; caused by particles less than 0.5 micron penetrating and remaining in the lung. Prime symptom is breathlessness; lung shadows show on X-ray.

Chronic intoxication with ionic bromides, historically, has resulted from medical use of bromides but not from environmental or occupational exposure; depression, hallucinosis, and schizophreniform psychosis can be seen in the absence of other signs of intoxication. Bromides may also induce sedation, irritability, agitation, delirium, memory loss, confusion, disorientation, forgetfulness (aphasias), dysarthria, weakness, fatigue, vertigo, stupor, coma, decreased appetite, nausea and vomiting, diarrhoea, hallucinations, an acne like rash on the face, legs and trunk, known as bronchoderma (seen in 25-30% of case involving bromide ion), and a profuse discharge from the nostrils (coryza). Ataxia and generalised hyperreflexia have also been observed. Correlation of neurologic symptoms with blood levels of bromide is inexact. The use of substances such as brompheniramine, as antihistamines, largely reflect current day usage of bromides; ionic bromides have been largely withdrawn from therapeutic use due to their toxicity. Several cases of foetal abnormalities have been described in mothers who took large doses of bromides during pregnancy.

Prolonged exposure to anticholinergic agents may irritate the eyes, causing allergic lid reactions, conjunctivitis, swelling, excess blood flow to the eyes, and sensitivity to light. Increase in eye pressure may lead to closed angle glaucoma. There may be hypersensitivity shown by conjunctivitis, rash and eczema. Anticholinergics can also cause chronic constipation with blockage of the intestine by feces.

Section 3 - COMPOSITION / INFORMATION ON INGREDIENTS

Section 4 - FIRST AID MEASURES

SWALLOWED

- - IF SWALLOWED, REFER FOR MEDICAL ATTENTION, WHERE POSSIBLE, WITHOUT DELAY.
- Where Medical attention is not immediately available or where the patient is more than 15 minutes from a hospital or unless

instructed otherwise:

- For advice, contact a Poisons Information Center or a doctor.
- Urgent hospital treatment is likely to be needed.
- If conscious, give water to drink.
- INDUCE vomiting with fingers down the back of the throat, ONLY IF CONSCIOUS. Lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration.
- NOTE: Wear a protective glove when inducing vomiting by mechanical means.
- In the mean time, qualified first-aid personnel should treat the patient following observation and employing supportive measures as indicated by the patient's condition.
- If the services of a medical officer or medical doctor are readily available, the patient should be placed in his/her care and a copy of the MSDS should be provided. Further action will be the responsibility of the medical specialist.
- If medical attention is not available on the worksite or surroundings send the patient to a hospital together with a copy of the MSDS.

EYE

- If this product comes in contact with the eyes:
- Immediately hold eyelids apart and flush the eye continuously with running water.
- Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids.
- Continue flushing until advised to stop by the Poisons Information Center or a doctor, or for at least 15 minutes.
- Transport to hospital or doctor without delay.
- Removal of contact lenses after an eye injury should only be undertaken by skilled personnel.

SKIN

If skin or hair contact occurs:

- Quickly but gently, wipe material off skin with a dry, clean cloth.
- Immediately remove all contaminated clothing, including footwear.
- Wash skin and hair with running water. Continue flushing with water until advised to stop by the Poisons Information Center.

• Transport to hospital, or doctor.

INHALED

- -
- If fumes or combustion products are inhaled remove from contaminated area.
- Lay patient down. Keep warm and rested.
- Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures.
- Apply artificial respiration if not breathing, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained. Perform CPR if necessary.
- · Transport to hospital, or doctor, without delay.

NOTES TO PHYSICIAN

■ Treatment regime for atropine intoxication:Empty the stomach by aspiration and lavage. The use of charcoal to prevent absorption, followed by lavage has been suggested. Give a purgative such as 30 gm. sodium sulfate in 250 ml. H2O. Excitement may be controlled by diazepam or other short acting barbiturates. Supportive therapy may require oxygen and assisted respiration, ice-bags or alcohol sponges for hyperpyrexia, especially in children, bladder catheterization and the administration of fluids.MARTINDALE: The Extra Pharmacopoeia: 29th Edition.Physostigmine salicylate (1-2 mg) subcutaneously or intravenously has been shown to reverse CNS symptoms of anticholinergic intoxication*.* Merck, Sharp and Dohme MSDS.

Overdosage with antimuscarinic agents can result in severe antimuscarinic effects. Treatment should be symptomatic and supportive. In the event of overdosage, ECG monitoring is recommended. Darifenacin has been administered in clinical trials at doses up to 75 mg (five times the maximum therapeutic dose) and signs of overdose were limited to abnormal vision.

Darifenacin is approximately 98% bound to plasma proteins (primarily to alpha-1-acid-glycoprotein). The steady-state volume of distribution (Vss) is estimated to be 163 L.

Darifenacin is extensively metabolized by the liver following oral dosing.

Metabolism is mediated by cytochrome P450 enzymes CYP2D6 and CYP3A4. The three main metabolic routes are as follows: monohydroxylation in the dihydrobenzofuran ring;

dihydrobenzofuran ring opening;

N-dealkylation of the pyrrolidine nitrogen.

The initial products of the hydroxylation and N-dealkylation pathways are the major circulating metabolites but they are unlikely to contribute significantly to the overall clinical effect of darifenacin.

A subset of individuals (approximately 7% Caucasians and 2% African Americans) are poor metabolizers (PMs) of CYP2D6 metabolized drugs. Individuals with normal CYP2D6 activity are referred to as extensive metabolizers (EMs). The metabolism of darifenacin in PMs will be principally mediated via CYP3A4. The darifenacin ratios (PM:EM) for Cmax and AUC following darifenacin 15 mg once-daily at steady state were 1.9 and 1.7, respectively.

darifenacin 15 mg once-daily at steady state were 1.9 and 1.7, respectively. Following administration of an oral dose of 14C-darifenacin solution to healthy volunteers, approximately 60% of the radioactivity was recovered in the urine and 40% in the feces. Only a small percentage of the excreted dose was unchanged darifenacin (3%). Estimated darifenacin clearance is 40 L/h for EMs and 32 L/h for PMs. The elimination half-life of darifenacin following chronic dosing is approximately 13-19 hours.

Section 5 - FIRE FIGHTING MEASURES				
Vapour Pressure (mmHG):	Negligible			
Upper Explosive Limit (%):	Not Available			
Specific Gravity (water=1):	Not Available			
Lower Explosive Limit (%):	Not Available			

EXTINGUISHING MEDIA

- •
- Foam.
- Dry chemical powder.
 BCE (where regulations area
- BCF (where regulations permit).

Carbon dioxide.

Water spray or fog - Large fires only.

FIRE FIGHTING

- - Alert Emergency Responders and tell them location and nature of hazard.
- · Wear breathing apparatus plus protective gloves.
- Prevent, by any means available, spillage from entering drains or water course.
- Use water delivered as a fine spray to control fire and cool adjacent area.
- DO NOT approach containers suspected to be hot.
- Cool fire exposed containers with water spray from a protected location.
- If safe to do so, remove containers from path of fire.
- · Equipment should be thoroughly decontaminated after use.

GENERAL FIRE HAZARDS/HAZARDOUS COMBUSTIBLE PRODUCTS

- Combustible solid which burns but propagates flame with difficulty.
- Avoid generating dust, particularly clouds of dust in a confined or unventilated space as dusts may form an explosive mixture with air, and any source of ignition, i.e. flame or spark, will cause fire or explosion. Dust clouds generated by the fine grinding of the solid are a particular hazard; accumulations of fine dust may burn rapidly and fiercely if ignited.
- Dry dust can be charged electrostatically by turbulence, pneumatic transport, pouring, in exhaust ducts and during transport.
- · Build-up of electrostatic charge may be prevented by bonding and grounding.
- Powder handling equipment such as dust collectors, dryers and mills may require additional protection measures such as explosion venting.

Combustion products include: carbon monoxide (CO), carbon dioxide (CO2), hydrogen bromide, nitrogen oxides (NOx), other pyrolysis products typical of burning organic material.

May emit poisonous fumes. May emit corrosive fumes.

FIRE INCOMPATIBILITY

• Avoid contamination with oxidizing agents i.e. nitrates, oxidizing acids, chlorine bleaches, pool chlorine etc. as ignition may result.

PERSONAL PROTECTION

Glasses: Chemical goggles. Gloves: Respirator: Particulate

Section 6 - ACCIDENTAL RELEASE MEASURES

MINOR SPILLS

- · Clean up waste regularly and abnormal spills immediately.
- Avoid breathing dust and contact with skin and eyes.
- Wear protective clothing, gloves, safety glasses and dust respirator.
- Use dry clean up procedures and avoid generating dust.
- Vacuum up or sweep up. NOTE: Vacuum cleaner must be fitted with an exhaust micro filter (HEPA type) (consider explosion-proof machines designed to be grounded during storage and use).
- Dampen with water to prevent dusting before sweeping.
- Place in suitable containers for disposal.

MAJOR SPILLS

Moderate hazard.

- CAUTION: Advise personnel in area.
- · Alert Emergency Responders and tell them location and nature of hazard.
- Control personal contact by wearing protective clothing.
- Prevent, by any means available, spillage from entering drains or water courses.
- Recover product wherever possible.
- IF DRY: Use dry clean up procedures and avoid generating dust. Collect residues and place in sealed plastic bags or other containers for disposal. IF WET: Vacuum/shovel up and place in labelled containers for disposal.
- ALWAYS: Wash area down with large amounts of water and prevent runoff into drains.
- If contamination of drains or waterways occurs, advise emergency services.

ACUTE EXPOSURE GUIDELINE LEVELS (AEGL) (in ppm)

AEGL 1: The airborne concentration of a substance above which it is predicted that the general population, including susceptible individuals, could experience notable discomfort, irritation, or certain asymptomatic nonsensory effects. However, the effects are not disabling and are transient and reversible upon cessation of exposure. AEGL 2: The airborne concentration of a substance above which it is predicted that the general population, including susceptible individuals, could experience irreversible or other serious, long-lasting adverse health effects or an impaired ability to escape.

AEGL 3: The airborne concentration of a substance above which it is predicted that the general population, including susceptible individuals, could experience life-threatening health effects or death.

Section 7 - HANDLING AND STORAGE

PROCEDURE FOR HANDLING

- Avoid all personal contact, including inhalation.
- Wear protective clothing when risk of exposure occurs.
- Use in a well-ventilated area.
- Prevent concentration in hollows and sumps.
- DO NOT enter confined spaces until atmosphere has been checked.
- DO NOT allow material to contact humans, exposed food or food utensils.
- Avoid contact with incompatible materials.
- When handling, DO NOT eat, drink or smoke.
- Keep containers securely sealed when not in use.
- Avoid physical damage to containers.
- Always wash hands with soap and water after handling.
- Work clothes should be laundered separately.
- Launder contaminated clothing before re-use.
- Use good occupational work practice.
- Observe manufacturer's storing and handling recommendations.
- Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions are maintained.

Empty containers may contain residual dust which has the potential to accumulate following settling. Such dusts may explode in the presence of an appropriate ignition source.

- · Do NOT cut, drill, grind or weld such containers
- In addition ensure such activity is not performed near full, partially empty or empty containers without appropriate workplace safety authorisation or permit.

RECOMMENDED STORAGE METHODS

Glass container.

- Polyethylene or polypropylene container.
- · Check all containers are clearly labelled and free from leaks.

STORAGE REQUIREMENTS

- - Store in original containers.
- Keep containers securely sealed.
- Store in a cool, dry, well-ventilated area.
- Store away from incompatible materials and foodstuff containers.
- Protect containers against physical damage and check regularly for leaks.
- Observe manufacturer's storing and handling recommendations.

SAFE STORAGE WITH OTHER CLASSIFIED CHEMICALS

X: Must not be stored together

O: May be stored together with specific preventions

+: May be stored together

Section 8 - EXPOSURE CONTROLS / PERSONAL PROTECTION

EXPOSURE CONTROLS

The following materials had no OELs on our records

darifenacin hydrobromide: CAS:133099-07-7

MATERIAL DATA

DARIFENACIN HYDROBROMIDE:

• Airborne particulate or vapor must be kept to levels as low as is practicably achievable given access to modern engineering controls and monitoring hardware. Biologically active compounds may produce idiosyncratic effects which are entirely unpredictable on the basis of literature searches and prior clinical experience (both recent and past).

PERSONAL PROTECTION

Consult your EHS staff for recommendations

EYE

• When handling very small quantities of the material eye protection may not be required.

For laboratory, larger scale or bulk handling or where regular exposure in an occupational setting occurs:

- Chemical goggles
- · Face shield. Full face shield may be required for supplementary but never for primary protection of eyes
- Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy
 document, describing the wearing of lens or restrictions on use, should be created for each workplace or task. This should
 include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience.
 Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the
 event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should
 be removed at the first signs of eye redness or irritation lens should be removed in a clean environment only after
 workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59]

HANDS/FEET

- Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include: such as:
- · frequency and duration of contact,
- · chemical resistance of glove material,
- glove thickness and
- dexterity

Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739).

- When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374) is recommended.
- When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374) is recommended.
- Contaminated gloves should be replaced.

Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.

- Rubber gloves (nitrile or low-protein, powder-free latex). Employees allergic to latex gloves should use nitrile gloves in preference.
- Double gloving should be considered.
- PVC gloves.
- Protective shoe covers.
- · Head covering.

Experience indicates that the following polymers are suitable as glove materials for protection against undissolved, dry solids, where abrasive particles are not present.

- polychloroprene
- nitrile rubber
- butyl rubber
- fluorocaoutchouc
- polyvinyl chloride

Gloves should be examined for wear and/ or degradation constantly.

OTHER

- For quantities up to 500 grams a laboratory coat may be suitable.
- For quantities up to 1 kilogram a disposable laboratory coat or coverall of low permeability is recommended. Coveralls should be buttoned at collar and cuffs.
- For quantities over 1 kilogram and manufacturing operations, wear disposable coverall of low permeability and disposable shoe covers.
- For manufacturing operations, air-supplied full body suits may be required for the provision of advanced respiratory protection.
- Eye wash unit.
- Ensure there is ready access to an emergency shower.
- For Emergencies: Vinyl suit
- Respirators may be necessary when engineering and administrative controls do not adequately prevent exposures.
- The decision to use respiratory protection should be based on professional judgment that takes into account toxicity information, exposure measurement data, and frequency and likelihood of the worker's exposure ensure users are not subject to high thermal loads which may result in heat stress or distress due to personal protective equipment (powered, positive flow, full face apparatus may be an option).
- Published occupational exposure limits, where they exist, will assist in determining the adequacy of the selected respiratory . These may be government mandated or vendor recommended.
- Certified respirators will be useful for protecting workers from inhalation of particulates when properly selected and fit tested as part of a complete respiratory protection program.
- Use approved positive flow mask if significant quantities of dust becomes airborne.
- Try to avoid creating dust conditions.

RESPIRATOR

_		

-			
Protection Factor	Half-Face Respirator	Full-Face Respirator	Powered Air Respirator
10 x PEL	P1	-	PAPR-P1
	Air-line*	-	-
50 x PEL	Air-line**	P2	PAPR-P2
100 x PEL	-	P3	-
		Air-line*	-
100+ x PEL	-	Air-line**	PAPR-P3
50 x PEL 100 x PEL 100+ x PEL	Air-line** -	P2 P3 Air-line* Air-line**	PAPR-P2 - - PAPR-P3

* - Negative pressure demand ** - Continuous flow

Explanation of Respirator Codes:

Class 1 low to medium absorption capacity filters.

Class 2 medium absorption capacity filters.

Class 3 high absorption capacity filters.

PAPR Powered Air Purifying Respirator (positive pressure) cartridge.

Type A for use against certain organic gases and vapors.

Type AX for use against low boiling point organic compounds (less than 65°C).

Type B for use against certain inorganic gases and other acid gases and vapors.

Type E for use against sulfur dioxide and other acid gases and vapors.

Type K for use against ammonia and organic ammonia derivatives

Class P1 intended for use against mechanically generated particulates of sizes most commonly encountered in industry, e.g. asbestos, silica.

Class P3 intended for use against both mechanically and thermally generated particulates, e.g. metal fume. Class P3 intended for use against all particulates containing highly toxic materials, e.g. beryllium. The local concentration of material, quantity and conditions of use determine the type of personal protective equipment required.

Use appropriate NIOSH-certified respirator based on informed professional judgement. In conditions where no reasonable estimate of exposure can be made, assume the exposure is in a concentration IDLH and use NIOSH-certified full face pressure demand SCBA with a minimum service life of 30 minutes, or a combination full facepiece pressure demand SAR with auxiliary self-contained air supply. Respirators provided only for escape from IDLH atmospheres shall be NIOSH-certified for escape from the atmosphere in which they will be used.

ENGINEERING CONTROLS

Enclosed local exhaust ventilation is required at points of dust, fume or vapor generation.

HEPA terminated local exhaust ventilation should be considered at point of generation of dust, fumes or vapors.

Barrier protection or laminar flow cabinets should be considered for laboratory scale handling.

The need for respiratory protection should also be assessed where incidental or accidental exposure is anticipated: Dependent on levels of contamination, PAPR, full face air purifying devices with P2 or P3 filters or air supplied respirators should be evaluated.

Fume-hoods and other open-face containment devices are acceptable when face velocities of at least 1 m/s (200 feet/minute) are achieved. Partitions, barriers, and other partial containment technologies are required to prevent migration of the material to uncontrolled areas. For non-routine emergencies maximum local and general exhaust are necessary. Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to effectively remove the contaminant.

Air Speed:
0.25-0.5 m/s (50-100 f/min.)
0.5-1 m/s (100-200 f/min.)
^s 1-2.5 m/s (200-500 f/min.)
Upper end of the range
1: Disturbing room air currents
2: Contaminants of high toxicity
3: High production, heavy use
4: Small hood-local control only

Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 1-2.5 m/s (200-500 f/min.) for extraction of gases discharged 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used.

Section 9 - PHYSICAL AND CHEMICAL PROPERTIES

PHYSICAL PROPERTIES

State	Divided Solid	Molecular Weight	507.46
Melting Range (°F)	440.6- 447.8	Viscosity	Not Applicable
Boiling Range (°F)	Not Applicable	Solubility in water (g/L)	Partly Miscible
Flash Point (°F)	Not Available	pH (1% solution)	Not Applicable
Decomposition Temp (°F)	Not Available	pH (as supplied)	Not Applicable
Autoignition Temp (°F)	Not Available	Vapour Pressure (mmHG)	Negligible
Upper Explosive Limit (%)	Not Available	Specific Gravity (water=1)	Not Available
Lower Explosive Limit (%)	Not Available	Relative Vapor Density (air=1)	Not Applicable
Volatile Component (%vol)	Negligible	Evaporation Rate	Not Applicable

APPEARANCE

White or almost white crystalline powder;

Section 10 - CHEMICAL STABILITY

CONDITIONS CONTRIBUTING TO INSTABILITY

- Presence of incompatible materials. .
- Product is considered stable.
- Hazardous polymerization will not occur.

STORAGE INCOMPATIBILITY

Avoid reaction with oxidizing agents.

For incompatible materials - refer to Section 7 - Handling and Storage.

Section 11 - TOXICOLOGICAL INFORMATION

darifenacin hydrobromide

TOXICITY AND IRRITATION

■ unless otherwise specified data extracted from RTECS - Register of Toxic Effects of Chemical Substances.

Asthma-like symptoms may continue for months or even years after exposure to the material ceases. This may be due to a non-allergenic condition known as reactive airways dysfunction syndrome (RADS) which can occur following exposure to high levels of highly irritating compound. Key criteria for the diagnosis of RADS include the absence of preceding respiratory disease, in a non-atopic individual, with abrupt onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the irritant. A reversible airflow pattern, on spirometry, with the presence of moderate to severe bronchial hyperreactivity on methacholine challenge testing and the lack of minimal lymphocytic inflammation, without eosinophilia, have also been included in the criteria for diagnosis of RADS. RADS (or asthma) following an irritating inhalation is an infrequent disorder with rates related to the concentration of and duration of exposure to the irritating substance. Industrial bronchitis, on the other hand, is a disorder that occurs as result of exposure due to high concentrations of irritating substance (often particulate in nature) and is completely reversible after exposure ceases. The disorder is characterised by dyspnea, cough and mucus production.

No significant acute toxicological data identified in literature search.

Carcinogenesis/Mutagenesis/Impairment of Fertility

Carcinogenicity studies with darifenacin were conducted in mice and rats. No evidence of drug-related carcinogenicity was revealed in a 24-month study in mice at dietary doses up to 100 mg/kg/day or approximately 32 times the estimated human-free AUC0-24h reached with 15 mg, the maximum recommended human dose (AUC at MRHD) and in a 24-month study in rats at doses up to 15 mg/kg/day or up to approximately 12 times the AUC at MRHD in female rats and approximately eight times the AUC at MRHD in male rats.

Darifenacin was not mutagenic in the bacterial mutation assays (Ames test) and the Chinese hamster ovary assay, and not clastogenic in the human lymphocyte assay, and the in vivo.

Darifenacin was not teratogenic in rats and rabbits at doses up to 50 and 30 mg/kg/day, respectively. At the dose of 50 mg/kg in rats, there was a delay in the ossification of the sacral and caudal vertebrae which was not observed at 10 mg/kg (approximately 13 times the AUC of free plasma concentration at MRHD). Exposure in this study at 50 mg/kg corresponds to approximately 59 times the AUC of free plasma concentration at MRHD. Dystocia was observed in dams at 10 mg/kg/day (17 times the AUC of free plasma concentration at MRHD). Slight developmental delays were observed in pups at this dose. At 3 mg/kg/day (five times the AUC of free plasma concentration at MRHD) there were no effects on dams or pups. At the dose of 30 mg/kg in rabbits, darifenacin was shown to increase postimplantation loss but not at 10 mg/kg (nine times the AUC of free plasma concentration drug at 30 mg/kg in this study corresponds to approximately 28 times the AUC at MRHD). Exposure to unbound drug at 30 mg/kg in this study corresponds to approximately 28 times observed at 10 mg/kg/day along with urinary bladder dilation consistent with pharmacological action of darifenacin. No effect was observed at 3 mg/kg/day (2.8 times the AUC of free plasma concentration at MRHD). There are no studies of darifenacin in pregnant women. Because animal reproduction studies are not always predictive of human response mouse bone marrow cytogenetics assay.

There was no evidence for effects on fertility in male or female rats treated at oral

Section 12 - ECOLOGICAL INFORMATION

Refer to data for ingredients, which follows:

DARIFENACIN HYDROBROMIDE:

Harmful to aquatic organisms.

Bromide ion may be introduced to the environment after the dissociation of various salts and complexes or the degradation of organobromide compounds.

Although not a significant toxin in mammalian or avian systems it is highly toxic to rainbow trout and Daphnia magna. Bromides may also affect the growth of micro-organisms and have been used for this purpose in industry.

Bromides in drinking water are occasionally subject to disinfection processes involving ozone of chlorine. Bromide may be oxidised to produce hypobromous acid which in turn may react with natural organic matter to form brominated compounds. The formation of bromoform has been well documented, as has the formation of bromoacetic acids, bromopicrin, cyanogen bromide, and bromoacetone. Bromates may also be formed following ozonation or chlorination if pH is relatively high. Bromates may be animal carcinogens.

DO NOT discharge into sewer or waterways.

Section 13 - DISPOSAL CONSIDERATIONS

Disposal Instructions

All waste must be handled in accordance with local, state and federal regulations.

| Puncture containers to prevent re-use and bury at an authorized landfill.

Legislation addressing waste disposal requirements may differ by country, state and/ or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked.

A Hierarchy of Controls seems to be common - the user should investigate:

- Reduction
- Reuse
- Recycling
- Disposal (if all else fails)

This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. Shelf life considerations should also be applied in making decisions of this type. Note that properties of a material may change in use, and recycling or reuse may not always be appropriate.

DO NOT allow wash water from cleaning equipment to enter drains. Collect all wash water for treatment before disposal.

- Recycle wherever possible.
- · Consult manufacturer for recycling options or consult Waste Management Authority for disposal if no suitable treatment or

disposal facility can be identified.

- Dispose of by: Burial in a licensed land-fill or Incineration in a licensed apparatus (after admixture with suitable combustible material)
- Decontaminate empty containers. Observe all label safeguards until containers are cleaned and destroyed.

Section 14 - TRANSPORTATION INFORMATION

NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS: DOT, IATA, IMDG

Section 15 - REGULATORY INFORMATION

No data for darifenacin hydrobromide (CAS: , 133099-07-7)

Section 16 - OTHER INFORMATION

LIMITED EVIDENCE

- Skin contact may produce serious health damage*.
- Cumulative effects may result following exposure*.
- May be harmful to the fetus/ embryo*.
- * (limited evidence).

Reasonable care has been taken in the preparation of this information, but the author makes no warranty of merchantability or any other warranty, expressed or implied, with respect to this information. The author makes no representations and assumes no liability for any direct, incidental or consequential damages resulting from its use. For additional technical information please call our toxicology department on +800 CHEMCALL.

Classification of the mixture and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references. A list of reference resources used to assist the committee may be found at: www.chemwatch.net/references.

• The (M)SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

This document is copyright. Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH. TEL (+61 3) 9572 4700.

Issue Date: Dec-14-2008 Print Date:Apr-21-2010