Difenoconazole

STATEMENT OF HAZARDOUS NATURE

CONSIDERED A HAZARDOUS SUBSTANCE ACCORDING TO OSHA 29 CFR 1910.1200.

NFPA

SUPPLIER

Company: Santa Cruz Biotechnology, Inc. Address: 2145 Delaware Ave Santa Cruz, CA 95060 Telephone: 800.457.3801 or 831.457.3800 Emergency Tel: CHEMWATCH: From within the US and Canada: 877-715-9305 Emergency Tel: From outside the US and Canada: +800 2436 2255 (1-800-CHEMCALL) or call +613 9573 3112

PRODUCT USE

Systemic fungicide with protective and curative action with novel broad-range activity protecting the yield and crop quality by foliar application or seed treatment. Acts by inhibition of demethylation. Regeant

SYNONYMS

C19-H17-Cl2-N3-O3, "1H-1, 2, 4-triazole, 1-[(2-(2-chloro-4-(4-chlorophenoxy)phenyl)-", "1H-1, 2, 4-triazole, 1-[(2-(2-chloro-4-(4-chlorophenoxy)phenyl)-", "4-triazole, 1-[(2-(2-chloro-4-(4-chlorophenoxy)phenyl)-", "1H-1, 2, 4-triazole, 1-[(2-(2-chloro-4-(4-chlorophenoxy)phenyl)-", "2-methyl-1, 3-dioxolan-2-yl)methyl]-", "2-methyl-1, 3-dioxolan-2-yl)methyl]-", "2-methyl-1, 3-dioxolan-2-yl)methyl]-", "CGA 169374", "azole pesticide/ fungicide"

Section 2 - HAZARDS IDENTIFICATION

CANADIAN WHMIS SYMBOLS

EMERGENCY OVERVIEW RISK Harmful if swallowed. Toxic to aquatic organisms may cause

Toxic to aquatic organisms, may cause long-term adverse effects in the aquatic environment.

POTENTIAL HEALTH EFFECTS

ACUTE HEALTH EFFECTS

SWALLOWED

• Accidental ingestion of the material may be harmful; animal experiments indicate that ingestion of less than 150 gram may be fatal or may produce serious damage to the health of the individual.

• Aromatase inhibitors (including triazoles and azoles) produce several side effects including mood swing, depression, weight gain, hot flushes, vaginal dryness, bloating, early onset of menopause. Long-term use may result in bone weakness, increased risk of blood clots, gastrointestinal disturbance, and sweats.

Aromatase inhibitors lower the level of oestrogen in post-menopausal women who have hormone-receptor-positive breast cancers. Prior to menopause oestrogen is mostly produced in the ovaries. Post-menopausal women produce oestrogen from another hormone, androgen. Aromatase inhibitors prevent the enzyme, aromatase from catalysing this reaction. Breast cancer cell growth in post-menopausal women is stimulated by oestrogen.

Although the material is not thought to be an irritant, direct contact with the eye may cause transient discomfort characterized by tearing or conjunctival redness (as with windburn). Slight abrasive damage may also result. The material may produce foreign body irritation in certain individuals.

SKIN

Skin contact is not thought to produce harmful health effects (as classified using animal models). Systemic harm, however, has been identified following exposure of animals by at least one other route and the material may still produce health damage following entry through wounds, lesions or abrasions. Good hygiene practice requires that exposure be kept to a minimum and that suitable gloves be used in an occupational setting.

Open cuts, abraded or irritated skin should not be exposed to this material.

Entry into the blood-stream, through, for example, cuts, abrasions or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected. INHALED

The material is not thought to produce respiratory irritation (as classified using animal models). Nevertheless inhalation of

Inhalation of fume, especially for prolonged periods, may produce respiratory discomfort and occasionally, distress.
 Inhalation of dusts, generated by the material during the course of normal handling, may produce severe damage to the health of the individual. Relatively small amounts absorbed from the lungs may prove fatal.

Persons with impaired respiratory function, airway diseases and conditions such as emphysema or chronic bronchitis, may incur further disability if excessive concentrations of particulate are inhaled.

Inhalation of dusts, generated by the material, during the course of normal handling, may produce severely toxic effects; these may be fatal.

Inhalation of dusts, generated by the material during the course of normal handling, may be damaging to the health of the individual

CHRONIC HEALTH EFFECTS

There has been some concern that this material can cause cancer or mutations but there is not enough data to make an assessment.

Exposure to the material may cause concerns for human fertility, on the basis that similar materials provide some evidence of impaired fertility in the absence of toxic effects, or evidence of impaired fertility occurring at around the same dose levels as other toxic effects, but which are not a secondary non-specific consequence of other toxic effects.

Based on experience with animal studies, there is a possibility that exposure to the material may result in toxic effects to the development of the fetus, at levels which do not cause significant toxic effects to the mother.

Long term exposure to high dust concentrations may cause changes in lung function i.e. pneumoconiosis; caused by particles less than 0.5 micron penetrating and remaining in the lung. Prime symptom is breathlessness; lung shadows show on X-ray.

Azole fungicides show a broad antifungal activity and are used either to prevent fungal infections or to cure an infection. Therefore, they are important tools in integrated agricultural production. According to their chemical structure, azole compounds are classified into triazoles and imidazoles; however, their antifungal activity is due to the same molecular, mechanism. The cell membrane assembly of fungi and yeast is disturbed by blocking the synthesis of the essential membrane component ergosterol. This fundamental biochemical mechanism is the basis for the use of azole fungicides in agriculture and in human and veterinary antimycotic therapies. The enzyme involved is sterol 14[alpha]-demethylase, which is found in several phyla. In mammals, it converts lanosterol into the meiosis-activating sterols (MAS) which regulate or modify cell division. These precursors of cholesterol have been discovered to moderate the development of male and female germ (sexual) cells. Several metabolites of lanosterol have been regarded only as precursors of cholesterol without any biological function in animals. This view dramatically changed recently with the observation that FF-MAS isolated from human follicle fluid and T-MAS isolated from bull testis as well as the MAS-412 and MAS-414 induced resumption of meiosis in cultivated mouse oocytes (Byskov et al. 1995)

Aromatase is another target enzyme of azole compounds. In steroidogenesis, it converts androgens into the corresponding oestrogens. The importance of androgens and oestrogens for the development of reproductive organs, for fertility, and in certain sex steroid-dependent diseases is well known. Therefore, azole compounds can be directed against aromatase to treat oestrogen-responsive diseases. Based on the inhibitory activity of azoles on key enzymes involved in sex steroid hormone synthesis, it is likely that effects on fertility, sexual behavior, and reproductive organ development will occur depending on dose level and duration of treatment of laboratory animals. Several azole compounds were shown to inhibit the aromatase and to disturb the balance of androgens and estrogens in vivo. In fact, the clinical use of azole compounds in estrogen-dependent diseases is based on this effect. Additionally, azole antifungals developed to inhibit the sterol 14[alpha]-demethylase of fungi and yeast in agriculture and medicine are also inhibiting aromatase. Therefore, these antifungals may unintentionally disturb the balance of androgens and estrogens. Until now, it is not clear whether this effect is compensated by an increased expression

of aromatase or by other unknown mechanisms. The broad use of biologically active compounds in human therapy as well as in nonhuman applications may involve some risks, as exemplified by emerging antibiotic resistance. In agriculture, fungi and yeast are well known to develop resistance to azoles, and some molecular mechanisms of resistance development have been described. The significance of the agricultural azole resistance for human clinical antimycotic therapies has been discussed in Europe, but is not clarified yet. The actual target enzyme of azole antifungals, the fungal sterol 14[alpha]-demethylase, is expressed in many species including humans, and it is highly conserved through evolution. Hence, it seems reasonable to assume that most of the azole antifungals used in agriculture and medicine as well as azoles used in management of breast cancer also act as inhibitors on human sterol 14[alpha]-demethylase to an unknown extent. The toxicologic profiles of individual azole fungicides provide evidence for endocrine effects. In fact, many of these fungicides have effects on prostate, testis, uterus, and ovaries as well as on fertility, development, and sexual behavior. The current database does not allow us to establish causal relationships of these effects with inhibition of sterol 14[alpha]-demethylase and/or aromatase, but the overall view strongly suggests a connection with disturbed steroidogenesis.

Zam et al; Environmental Health Perspectives - 3/1/2003

Some azoles have been associated with prolongation of the QT interval on the electrocardiogram.

Repeated or long-term occupational exposure is likely to produce cumulative health effects involving organs or biochemical systems.

Section 3 - COMPOSITION / INFORMATION ON INGREDIENTS HAZARD RATINGS Min Max Flammability. 1 4 Toxicity: Body Contact: 0 Min/Nil=0 Low=1 Moderate=2 Reactivity: 1 High=3 2 Chronic Extreme=4 NAME CAS RN % 119446-68-3 >98 difenoconazole

Section 4 - FIRST AID MEASURES

SWALLOWED

- IF SWALLOWED, REFER FOR MEDICAL ATTENTION, WHERE POSSIBLE, WITHOUT DELAY.
- Where Medical attention is not immediately available or where the patient is more than 15 minutes from a hospital or unless instructed otherwise:
- For advice, contact a Poisons Information Center or a doctor.
- · Urgent hospital treatment is likely to be needed.
- If conscious, give water to drink.
- INDUCE vomiting with fingers down the back of the throat, ONLY IF CONSCIOUS. Lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration.
- NOTE: Wear a protective glove when inducing vomiting by mechanical means.
- In the mean time, gualified first-aid personnel should treat the patient following observation and employing supportive measures as indicated by the patient's condition.
- If the services of a medical officer or medical doctor are readily available, the patient should be placed in his/her care and a copy of the MSDS should be provided. Further action will be the responsibility of the medical specialist.
- If medical attention is not available on the worksite or surroundings send the patient to a hospital together with a copy of the MSDS.

EYE

- If this product comes in contact with the eyes:
- Immediately hold eyelids apart and flush the eye continuously with running water.
- Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids.
- Continue flushing until advised to stop by the Poisons Information Center or a doctor, or for at least 15 minutes.
- Transport to hospital or doctor without delay.
- Removal of contact lenses after an eye injury should only be undertaken by skilled personnel.

SKIN

- If skin or hair contact occurs:
- Flush skin and hair with running water (and soap if available).
- Seek medical attention in event of irritation.

INHALED

- · If fumes or combustion products are inhaled remove from contaminated area.
- Lay patient down. Keep warm and rested.
- Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures.
- Apply artificial respiration if not breathing, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained. Perform CPR if necessary.
- Transport to hospital, or doctor, without delay

NOTES TO PHYSICIAN

for poisons (where specific treatment regime is absent):

BASIC TREATMENT

- Establish a patent airway with suction where necessary.
- Watch for signs of respiratory insufficiency and assist ventilation as necessary.
- Administer oxygen by non-rebreather mask at 10 to 15 l/min.
- Monitor and treat, where necessary, for pulmonary edema .
- Monitor and treat, where necessary, for shock.
- Anticipate seizures .
- DO NOT use emetics. Where ingestion is suspected rinse mouth and give up to 200 ml water (5 ml/kg recommended) for dilution where patient is able to swallow, has a strong gag reflex and does not drool.

ADVANCED TREATMENT

- · Consider orotracheal or nasotracheal intubation for airway control in unconscious patient or where respiratory arrest has occurred
- · Positive-pressure ventilation using a bag-valve mask might be of use.
- Monitor and treat, where necessary, for arrhythmias.
- Start an IV D5W TKO. If signs of hypovolemia are present use lactated Ringers solution. Fluid overload might create complications.
- Drug therapy should be considered for pulmonary edema.
- Hypotension with signs of hypovolemia requires the cautious administration of fluids. Fluid overload might create complications.
- Treat seizures with diazepam.
- Proparacaine hydrochloride should be used to assist eye irrigation.

BRONSTEIN, A.C. and CURRANCE, P.L. EMERGENCY CARE FOR HAZARDOUS MATERIALS EXPOSURE: 2nd Ed. 1994. Treat symptomatically.

Section 5 - FIRE FIGHTING MEASURES

Vapor Pressure (mmHg):	247.52 nPa (25 C)
Upper Explosive Limit (%):	Not applicable
Specific Gravity (water=1):	1.4 (20 C)
Lower Explosive Limit (%):	Not applicable

EXTINGUISHING MEDIA

Foam.

- Dry chemical powder.
- BCF (where regulations permit).
- Carbon dioxide
- Water spray or fog Large fires only.

FIRE FIGHTING

- Alert Emergency Responders and tell them location and nature of hazard.
- · Wear breathing apparatus plus protective gloves.
- Prevent, by any means available, spillage from entering drains or water course.
- Use water delivered as a fine spray to control fire and cool adjacent area.
- · DO NOT approach containers suspected to be hot.
- Cool fire exposed containers with water spray from a protected location.
- If safe to do so, remove containers from path of fire.
- · Equipment should be thoroughly decontaminated after use

GENERAL FIRE HAZARDS/HAZARDOUS COMBUSTIBLE PRODUCTS

- - Combustible solid which burns but propagates flame with difficulty.
- Avoid generating dust, particularly clouds of dust in a confined or unventilated space as dusts may form an explosive
 mixture with air, and any source of ignition, i.e. flame or spark, will cause fire or explosion. Dust clouds generated by the
 fine grinding of the solid are a particular hazard; accumulations of fine dust may burn rapidly and fiercely if ignited.
- Dry dust can be charged electrostatically by turbulence, pneumatic transport, pouring, in exhaust ducts and during transport.
- Build-up of electrostatic charge may be prevented by bonding and grounding.
- Powder handling equipment such as dust collectors, dryers and mills may require additional protection measures such as explosion venting.

Combustion products include: carbon monoxide (CO), carbon dioxide (CO2), hydrogen chloride, phosgene, nitrogen oxides (NOx), other pyrolysis products typical of burning organic material.

FIRE INCOMPATIBILITY

Avoid contamination with oxidizing agents i.e. nitrates, oxidizing acids, chlorine bleaches, pool chlorine etc. as ignition may result.

PERSONAL PROTECTION

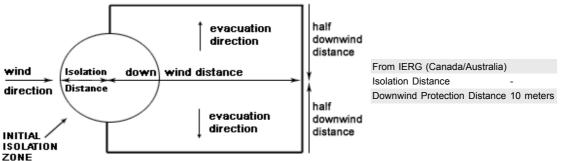
Glasses: Chemical goggles. Gloves: Respirator: Particulate

Section 6 - ACCIDENTAL RELEASE MEASURES

MINOR SPILLS

- Environmental hazard contain spillage.
- Clean up waste regularly and abnormal spills immediately.
- Avoid breathing dust and contact with skin and eyes.
- Wear protective clothing, gloves, safety glasses and dust respirator.
- Use dry clean up procedures and avoid generating dust.
- Vacuum up or sweep up. NOTE: Vacuum cleaner must be fitted with an exhaust micro filter (HEPA type) (consider explosion-proof machines designed to be grounded during storage and use).
- Dampen with water to prevent dusting before sweeping.
- Place in suitable containers for disposal.

MAJOR SPILLS


Environmental hazard - contain spillage.

Moderate hazard.

- CAUTION: Advise personnel in area.
- · Alert Emergency Responders and tell them location and nature of hazard.
- Control personal contact by wearing protective clothing.
- Prevent, by any means available, spillage from entering drains or water courses.
- · Recover product wherever possible.
- IF DRY: Use dry clean up procedures and avoid generating dust. Collect residues and place in sealed plastic bags or other containers for disposal. IF WET: Vacuum/shovel up and place in labelled containers for disposal.
- ALWAYS: Wash area down with large amounts of water and prevent runoff into drains.
- If contamination of drains or waterways occurs, advise emergency services.

PROTECTIVE ACTIONS FOR SPILL

PROTECTIVE ACTION ZONE

FOOTNOTES

1 PROTECTIVE ACTION ZONE is defined as the area in which people are at risk of harmful exposure. This zone assumes that random changes in wind direction confines the vapour plume to an area within 30 degrees on either side of the predominant wind direction, resulting in a crosswind protective action distance equal to the downwind protective action distance.

2 PROTECTIVE ACTIONS should be initiated to the extent possible, beginning with those closest to the spill and working away from the site in the downwind

direction. Within the protective action zone a level of vapour concentration may exist resulting in nearly all unprotected persons becoming incapacitated and

direction. Within the protective action zone a level of vapour concentration may exist resulting in nearly all unprotected persons becoming incapacitated and unable to take protective action and/or incurring serious or irreversible health effects. 3 INITIAL ISOLATION ZONE is determined as an area, including upwind of the incident, within which a high probability of localised wind reversal may expose nearly all persons without appropriate protection to life-threatening concentrations of the material. 4 SMALL SPILLS involve a leaking package of 200 litres (55 US gallons) or less, such as a drum (jerrican or box with inner containers). Larger packages leaking less than 200 litres and compressed gas leaking from a small cylinder are also considered "small spills". LARGE SPILLS involve many small leaking packages or a leaking package of greater than 200 litres, such as a cargo tank, portable tank or a "one-tonne" compressed gas cylinder. 5 Guide 171 is taken from the US DOT emergency response guide book. 6 IERG information is derived from CANUTEC - Transport Canada.

ACUTE EXPOSURE GUIDELINE LEVELS (AEGL) (in ppm)

AEGL 1: The airborne concentration of a substance above which it is predicted that the general population, including susceptible individuals, could experience notable discomfort, irritation, or certain asymptomatic nonsensory effects. However, the effects are not disabling and are transient and reversible upon cessation of exposure.

AEGL 2: The airborne concentration of a substance above which it is predicted that the general population, including susceptible individuals, could

experience irreversible or other serious, long-lasting adverse health effects or an impaired ability to escape.

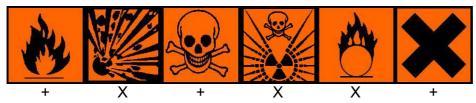
AEGL 3: The airborne concentration of a substance above which it is predicted that the general population, including susceptible individuals, could experience life-threatening health effects or death.

Section 7 - HANDLING AND STORAGE

PROCEDURE FOR HANDLING

- Avoid all personal contact, including inhalation.
- Wear protective clothing when risk of exposure occurs.
- Use in a well-ventilated area.
- Prevent concentration in hollows and sumps
- DO NOT enter confined spaces until atmosphere has been checked.
- DO NOT allow material to contact humans, exposed food or food utensils.
- Avoid contact with incompatible materials.
- When handling, DO NOT eat, drink or smoke.
- Keep containers securely sealed when not in use.
- Avoid physical damage to containers.
- Always wash hands with soap and water after handling.
- Work clothes should be laundered separately.
- Launder contaminated clothing before re-use.
- Use good occupational work practice.
- Observe manufacturer's storing and handling recommendations.
- Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions are maintained.

Empty containers may contain residual dust which has the potential to accumulate following settling. Such dusts may explode in the presence of an appropriate ignition source.


Do NOT cut, drill, grind or weld such containers

In addition ensure such activity is not performed near full, partially empty or empty containers without appropriate workplace safety authorisation or permit.

RECOMMENDED STORAGE METHODS

- ٠ Polyethylene or polypropylene container.
- Check all containers are clearly labelled and free from leaks.
- STORAGE REQUIREMENTS
- Observe manufacturer's storing and handling recommendations.

SAFE STORAGE WITH OTHER CLASSIFIED CHEMICALS

X: Must not be stored together

O: May be stored together with specific preventions

+: May be stored together

Section 8 - EXPOSURE CONTROLS / PERSONAL PROTECTION

EXPOSURE CONTROLS

Source	Material	TWA ppm	TWA mg/m³	STEL ppm	STEL mg/m³	Peak ppm	Peak mg/m³	TWA F/CC	Notes
US - Oregon Permissible Exposure Limits (Z3)	difenoconazole (Inert or Nuisance Dust: (d) Total dust)		10						*
US OSHA Permissible Exposure Levels (PELs) - Table Z3	difenoconazole (Inert or Nuisance Dust: (d) Respirable fraction)		5						
US OSHA Permissible Exposure Levels (PELs) - Table Z3	difenoconazole (Inert or Nuisance Dust: (d) Total dust)		15						
US - Hawaii Air Contaminant Limits	difenoconazole (Particulates not other wise regulated - Total dust)		10						

US - Hawaii Air Contaminant Limits	difenoconazole (Particulates not other wise regulated - Respirable fraction)	5	
US - Oregon Permissible Exposure Limits (Z3)	difenoconazole (Inert or Nuisance Dust: (d) Respirable fraction)	5	*
US - Tennessee Occupational Exposure Limits - Limits For Air Contaminants	difenoconazole (Particulates not otherwise regulated Respirable fraction)	5	
US - Wyoming Toxic and Hazardous Substances Table Z1 Limits for Air Contaminants	difenoconazole (Particulates not otherwise regulated (PNOR)(f)- Respirable fraction)	5	
US - Michigan Exposure Limits for Air Contaminants	difenoconazole (Particulates not otherwise regulated, Respirable dust)	5	

MATERIAL DATA

DIFENOCONAZOLE:

It is the goal of the ACGIH (and other Agencies) to recommend TLVs (or their equivalent) for all substances for which there

is evidence of health effects at airborne concentrations encountered in the workplace. At this time no TLV has been established, even though this material may produce adverse health effects (as evidenced in animal experiments or clinical experience). Airborne concentrations must be maintained as low as is practically possible and occupational exposure must be kept to a minimum.

NOTE: The ACGIH occupational exposure standard for Particles Not Otherwise Specified (P.N.O.S) does NOT apply.

PERSONAL PROTECTION

Consult your EHS staff for recommendations

EYE

- ٠ Safety glasses with side shields
- . Chemical goggles.
- Contact lenses pose a special hazard; soft lenses may absorb irritants and all lenses concentrate them.
- HANDS/FEET
- Wear chemical protective gloves, eg. PVC.
- Wear safety footwear or safety gumboots, eg. Rubber. Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include: such as:
- frequency and duration of contact,
- chemical resistance of glove material,
- glove thickness and
- dexterity
- Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739).
- When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374) is recommended.
- When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374) is recommended.

Contaminated gloves should be replaced.

Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.

OTHER

- Overalls.
- P.V.C. apron.
- Barrier cream.
- Skin cleansing cream.
- Eye wash unit
- Respirators may be necessary when engineering and administrative controls do not adequately prevent exposures.
- The decision to use respiratory protection should be based on professional judgment that takes into account toxicity information, exposure measurement data, and frequency and likelihood of the worker's exposure ensure users are not subject to high thermal loads which may result in heat stress or distress due to personal protective equipment (powered, positive flow, full face apparatus may be an option).
- Published occupational exposure limits, where they exist, will assist in determining the adequacy of the selected respiratory These may be government mandated or vendor recommended.
- Certified respirators will be useful for protecting workers from inhalation of particulates when properly selected and fit tested as part of a complete respiratory protection program.
- Use approved positive flow mask if significant quantities of dust becomes airborne.
- Try to avoid creating dust conditions.

RESPIRATOR

Protection Factor	Half-Face Respirator	Full-Face Respirator	Powered Air Respirator
10 x PEL	P1	-	PAPR-P1
	Air-line*	-	-
50 x PEL	Air-line**	P2	PAPR-P2
100 x PEL	-	P3	-
		Air-line*	-
100+ x PEL	-	Air-line**	PAPR-P3
* Negetive pressure demonstra	** Continuous flour		

- Negative pressure demand ** - Continuous flow Explanation of Respirator Codes:

Class 1 low to medium absorption capacity filters.

Class 2 medium absorption capacity filters.

Class 3 high absorption capacity filters. PAPR Powered Air Purifying Respirator (positive pressure) cartridge. Type A for use against certain organic gases and vapors.

Type AX for use against low boiling point organic compounds (less than 65°C).

Type B for use against certain inorganic gases and other acid gases and vapors.

Type E for use against sulfur dioxide and other acid gases and vapors.

Type K for use against ammonia and organic ammonia derivatives

Class P1 intended for use against mechanically generated particulates of sizes most commonly encountered in industry, e.g. asbestos, silica.

Class P2 intended for use against both mechanically and thermally generated particulates, e.g. metal fume. Class P3 intended for use against all particulates containing highly toxic materials, e.g. beryllium.

The local concentration of material, quantity and conditions of use determine the type of personal protective equipment required.

Use appropriate NIOSH-certified respirator based on informed professional judgement. In conditions where no reasonable estimate of exposure can be made, assume the exposure is in a concentration IDLH and use NIOSH-certified full face pressure demand SCBA with a minimum service life of 30 minutes, or a combination full facepiece pressure demand SAR with auxiliary self-contained air supply. Respirators provided only for escape from IDLH atmospheres shall be NIOSH-certified for escape from the atmosphere in which they will be used.

ENGINEERING CONTROLS

- Local exhaust ventilation is required where solids are handled as powders or crystals; even when particulates are relatively large, a certain proportion will be powdered by mutual friction.
- Exhaust ventilation should be designed to prevent accumulation and recirculation of particulates in the workplace.
- If in spite of local exhaust an adverse concentration of the substance in air could occur, respiratory protection should be considered. Such protection might consist of:

(a): particle dust respirators, if necessary, combined with an absorption cartridge;

(b): filter respirators with absorption cartridge or canister of the right type;

(c): fresh-air hoods or masks

- Build-up of electrostatic charge on the dust particle, may be prevented by bonding and grounding.
- Powder handling equipment such as dust collectors, dryers and mills may require additional protection measures such as explosion venting.

Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to efficiently remove the contaminant.

Type of Contaminant:	Air Speed:
direct spray, spray painting in shallow booths, drum filling, conveyer loading, crusher dusts, gas discharge (active generation into zone of rapid air motion)	1-2.5 m/s (200-500 f/min.)
grinding, abrasive blasting, tumbling, high speed wheel generated dusts (released at high initial velocity into zone of very high rapid air motion).	2.5-10 m/s (500-2000 f/min.)
Within each range the appropriate value depends on:	
Lower end of the range	Upper end of the range
1: Room air currents minimal or favorable to capture	1: Disturbing room air currents
2: Contaminants of low toxicity or of nuisance value only	2: Contaminants of high toxicity
3: Intermittent, low production.	3: High production, heavy use
4: Large hood or large air mass in motion	4: Small hood-local control only

Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 4-10 m/s (800-2000 f/min) for extraction of crusher dusts generated 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used.

Section 9 - PHYSICAL AND CHEMICAL PROPERTIES

PHYSICAL PROPERTIES

Solid. Does not mix with water. Sinks in water.			
State	Divided solid	Molecular Weight	406.3
Melting Range (°F)	173.48	Viscosity	Not Applicable
Boiling Range (°F)	Not available	Solubility in water (g/L)	Partly miscible
Flash Point (°F)	Not available	pH (1% solution)	Not available
Decomposition Temp (°F)	>572	pH (as supplied)	Not applicable
Autoignition Temp (°F)	Not available.	Vapor Pressure (mmHg)	247.52 nPa (25 C)
Upper Explosive Limit (%)	Not applicable	Specific Gravity (water=1)	1.4 (20 C)
Lower Explosive Limit (%)	Not applicable	Relative Vapor Density (air=1)	Not applicable
Volatile Component (%vol)	Negligible	Evaporation Rate	Not applicable

APPEARANCE

White to light beige crystalline solid; does not mix well with water (16 mg/l, 25 C). Solubilities (g/l, 25 C): ethanol 330, acetone 610, toluene 490, n-hexane 0.0034, n-octanol 95. pKa < 0.

Section 10 - CHEMICAL STABILITY

CONDITIONS CONTRIBUTING TO INSTABILITY

- Presence of incompatible materials.
- Product is considered stable
- Hazardous polymerization will not occur.

STORAGE INCOMPATIBILITY

Avoid reaction with oxidizing agents.

For incompatible materials - refer to Section 7 - Handling and Storage.

Section 11 - TOXICOLOGICAL INFORMATION

Eye (rabbit): non-irritating *

Skin (rabbit): non-irritating

difenoconazole

TOXICITY AND IRRITATION

unless otherwise specified data extracted from RTECS - Register of Toxic Effects of Chemical Substances IRRITATION

TOXICITY

Oral (rat) LD50: 1453 mg/kg

Inhalation (rat) LC50: >45 mg/m3/4h

Inhalation (rat) LC50: 3300 mg/m³/4h *

Oral (mouse) LD50: >2000 mg/kg

Dermal (rabbit) LD50: >2010 mg/kg

Oral (duck) LD50: >2150 mg/kg

[* The Pesticides Manual, Incorporating The Agrochemicals Handbook, 10th Edition, Editor Clive Tomlin, 1994, British Crop Protection Council].
 Non-sensitising to skin (guinea pig) *

NOEL (1 y) for dogs 1 mg/kg daily * Toxicity Class WHO III *

NOEL (2 y) for rats 20 ppm, equivalent to 1 mg/kg b.w. daily *

ADI 0.01 mg/kg b.w.

Toxicity Class WHO III * The acute toxicity of difenoconazole was low. Difenoconazole is very slightly and transiently irritating to the skin and moderately and transiently irritating to the eyes of rabbits and is non-sensitizing in a modified Buehler test in guinea-pigs.

Overall, in short-term studies with orally-administered difenoconazole, the signs of toxicity

observed in mice, rats and dogs were similar, with reduced body-weight gain and increased liver weights being common features. Histopathology confirmed the liver as a target organ with observation of diffuse or centrilobular hypertrophy of hepatocytes in rats and mice, although this can also be indicative of an adaptive response. Cataracts were found in dogs fed diets containing difenoconazole at a concentration of . 3000 ppm, equal to 96.6 mg/kg bw per day, for 6 months, with an NOAEL of 1000 ppm, equal to 31.3 mg/kg bw per day; however, cataracts were not induced in a second study in dogs given diets containing difenoconazole at up to 1500 ppm, equal to 51.2 mg/kg bw per day, for 1 year. Increased activity of alkaline phosphatase was observed in two studies in rats and in one in dogs. No other blood chemistry changes were consistently observed, although reduced.

concentrations of blood protein were observed in dogs given diets containing difenoconazole at 6000 ppm, equal to 157.8 mg/kg bw per day. Also in dogs, a reduction in erythrocyte count of almost 20% was observed in females at this high level of exposure.

For the short-term dietary studies, the NOAELs were: in studies of up to 90 days in rats, 200 ppm (equal to 17 mg/kg bw per day) on the basis of increased hepatocellular hypertrophy and liver weight; in a 90-day dietary study in mice, 200 ppm (equal to 34.2 mg/kg bw per day) on the basis of clinical signs of toxicity and changes in liver weight and increased incidence of centrilobular hepatocellular hypertrophy; in a 28-week study in dogs, 1000 ppm (equal to 31.3 mg/kg bw per day) on the basis of cataracts and liver-weight changes; in a 12-month study in dogs, 100 ppm (equal to 3.6 mg/kg bw per day) on the basis of reduced body-weight gain; in a 4-week study of dermal toxicity with difenoconazole in rats, 100 mg/kg bw per day, on the basis of minimal centrilobular hepatocellular hypertrophy, minimal to moderate thyroid follicular cell hypertrophy and skin lesions at the site of application.

Long-term feeding studies in rats and mice fed with difenoconazole confirmed that the primary target organ was the liver. There was no evidence for any carcinogenic potential in rats, in which hepatic effects were increases in liver weight and hepatocellular hypertrophy in male and female rats. In addition, there were reductions in erythrocyte parameters in female rats

at the highest dose, 2500 ppm, equal to 170 mg/kg by per day. In mice, there was very high, treatment-related mortality at the beginning of the 18-month study. In groups of 70 mice, there were 52 deaths among females receiving difenoconazole at 4500 ppm and 16 deaths among females at 3000 ppm (reduced to 2500 ppm after 1 week) within the first 2 weeks, while, among the male mice there were 11 deaths in the group at 4500 ppm within the first 3 weeks of the study. There was an increased incidence of hepatocellular adenomas and carcinomas in the group of male and female mice fed diet containing difenoconazole at 2500 ppm, equal to 423 and 513 mg/kg bw per day, respectively, and males at 4500 ppm, equal to 819 mg/kg bw per day. No increase in the incidence of tumours was observed at 300 ppm, equal to 46.3 and 57.8 mg/kg bw per day in males and females, respectively. However, the neoplastic responses occurred at highly toxic doses that also caused the death of substantial proportions of the groups of mice. Among the survivors, biliary stasis and hepatic single-cell necrosis as well as hepatocellular hypertrophy were significantly increased in male and female mice at the tumorigenic doses. On the basis of a study of enzyme activities in male mice, difenoconazole is considered to be a reversible

barbiturate-type inducer of metabolizing enzymes in the mouse liver. No peroxisome proliferation was observed. The NOEL was 10 mg/kg, there being no inductive effect on metabolizing enzymes and other parameters in the mouse liver.

The NOAEL in long-term studies in rats was 20 ppm, equal to 1.0 mg/kg bw per day, on the basis of reduced body-weight gains during the first year in males and females, reduced platelet counts in males and hepatic centrilobular hypertrophy in males and females at 500 ppm, equal to 24 mg/kg bw per day. In long-term studies in mice, the NOAEL was 30 ppm, equal to 4.7 mg/kg bw per day, on the basis of decreased body-weight gain in males, increased liver weight in females and hepatocellular hypertrophy in males at 300 ppm, equal to 46.3 mg/kg bw per day.

Difenoconazole was tested for genotoxicity in an adequate range of assays, both in vitro and in vivo. No evidence for genotoxicity was observed in any test, Difenoconazole causes an increase in the incidence of hepatocellular adenomas and carcinomas in mice (but not in rats) by a

non-genotoxic mode of action, the nature of which has not been established but which resembles that for phenobarbital in its liver enzyme-inducing characteristics. It is therefore unlikely to pose a carcinogenic risk to humans at exposure levels that do not cause changes in the liver

CARCINOGEN

DIFENOCONAZOLE (DIVIDEND) US Environmental Defense Scorecard Suspected Carcinogens Reference(s) OPP-CAN

Section 12 - ECOLOGICAL INFORMATION

Refer to data for ingredients, which follows: DIFENOCONAZOLĚ

 Toxic to aquatic organisms, may cause long-term adverse effects in the aquatic environment.
 Do NOT allow product to come in contact with surface waters or to intertidal areas below the mean high water mark. Do not contaminate water when cleaning equipment or disposing of equipment wash-waters.

Wastes resulting from use of the product must be disposed of on site or at approved waste sites.

For azole-containing substances.

Azole fungicides and systemically used antifungal drugs directly interfere with steroidogenesis by acting as potent inhibitors of steroidogenic enzymes and are known to cause endocrine disruption mainly via this mechanism. An important P450 enzyme involved in the steroidogenesis is aromatase. Aromatase demethylates C10 and specifically

converts androstenedione and testosterone. On the protein level, the amino acid sequence homology between aromatase from fish and humans is about 50% and between rats and humans is about 78%. In mammals, aromatase is mainly expressed in the brain and the gonads, but it is also found in placental, adipose, and bone tissue. The physiologic balance between different sex steroid hormones is crucial for the development, maintenance, and function of the reproductive system as well as for the differentiation of the sexual phenotype during ontogeny. Oestrogens (estrone and estradiol) are products of the androgens (androstenedione and testosterone), and the reaction is catalysed by aromatase. In mammals, differentiation of the male phenotype depends not only on testosterone but also on estradiol generated from testosterone by neuronal aromatase in central nervous system. Therefore, disturbances in aromatase expression and/or changes in its catalytic activity are expected to exhibit negative effects on reproduction parameters.

Azole-containing compounds produce profound effects in the environment. In part this is due to inhibition of several enzyme systems including those involving sterol 14[alpha]-demethylase. Sterol 14[alpha]-demethylase is a member of the superfamily of haeme-containing cytochrome P450 enzymes involved in metabolism of endogenous and xenobiotic substances. The antifungal effect of azoles is due to inhibition of sterol 14[alpha]-demethylase in fungi and yeast, thereby blocking the biosynthesis of ergosterol The subsequent lack of ergosterol is detrimental because ergosterol is an essential sterol component in the membranes of fungi and yeast. Sterol 14[alpha]-demethylase is not only expressed in fungi and yeast but is also found in many other species ranging from bacteria to mammals. In plants, the sterol 14[alpha]-demethylase reaction metabolises obtusifoliol and provides precursors for biosynthesis of phytosterols. In animals, the sterol 14[alpha]-demethylase reaction metabolises part of the metabolic pathway leading to biosynthesis of cholesterol. Cholesterol in turn is the substrate for the production of many other sterols (e.g., the sex steroid hormones). The DNA sequences encoding sterol 14[alpha]-demethylase of many fungi and yeast are known, as well as the sequences of mice, rats, pigs, and humans. On the protein level, the amino acid sequences are highly conserved along the phylogenetic tree. This fact is considered by many authors as an indication of the pivotal role of sterol 14[alpha]-demethylase in all

organisms. The homology of the amino acid sequence level between rats and humans is 93% and 40% between fungi and humans. In humans, the sterol 14[alpha]-demethylase is expressed in many different tissues.

 DO NOT discharge into sewer or waterways.
 Triazole fungicides share common metabolites, the triazole compounds 1,2,4-triazole (free triazole), triazole alanine, and triazole acetic acid, In environmental fate studies, all three forms of triazole (1,2,4-T, TA, and TAA) have been found and three is evidence that the three can inter-convert in soil and aquatic systems

As a plant metabolite, and given the wide use of triazole-derivative pesticides (used as fungicides on many crops as well as on turf) free triazole is found in a variety of food commodities, including animal byproducts. 1,2,4-triazole appears to be relatively stable in the environment, and may be found in rotational crops as well as in water.

Studies indicate that 1,2,4-triazole affects the central and peripheral nervous systems, reproductive tissues of both sexes, and the hematological system. Developmental and reproductive effects have been noted for this compound. Based on the available metabolism data from rats and livestock, 1,2,4-triazole may form in humans following exposure to parent triazole compounds.

The available studies on triazole conjugates found developmental skeletal effects, decreased body weight and body weight gain, and decreased leukocytes and triglycerides following exposure in animals. log Kow 819 (pH 4.2, pH 0.4, 25 C)#90etox1

Ecotoxicology:

Birds Acute oral LD50 for mallard ducks >2150 mg/kg LC50 (9 d) for bobwhite quail >4760 ppm

Fish LC50 (96 h) for rainbow trout 0.8 mg/l

Bees: Non-toxic to honeybees: LD50 (oral) >187 ug/bee

Daphnia EC50 (48 h) 0.8 mg/l

Other beneficial spp. LC50 for earthworm >610 mg/kg

Environmental fate:

Plants: Two metabolic paths have been identified, one by a triazole route to triazolylalanine and triazolylacetic acid; the other by hydroxylation of the phenyl ring followed by conjugation. Soil and water: Low mobility in soil; undergoes slow degradation.

Difenoconazole residues are reasonably persistent in soils and are expected to be present in the soil at harvest time for treated root and tuber crops. Difenoconazole residues are also expected to persist in the soil until the sowing of rotational crops. The confined rotational crops studies demonstrate that

difenoconazole itself does not appear as a residue in the rotational crop. The water-soluble and mobile metabolites triazolylalanine, triazolylactic acid and triazolyl-lactic acid have been identified in the rotational crops. Aerobic soil degradation rates were influenced by the nature of the soil, temperature, moisture

status of the soil and dose when [14C]difenoconazole was subjected to laboratory soil incubation.

Estimated aerobic soil metabolism half-lives for difenoconazole at 20 °C ranged from 63 to 700 days

(n=12) with a median of 181 days. After 2207300 days, mineralization and unextractable residues (20754% of dose) were major sinks for the [14C] label. The degree of mineralization was different for the phenyl and triazole label positions, e.g., 0.8?4.6 % of the dose for the triazole label and 3.4?33 % for the phenyl label. CGA 205375 and 1,2,4-triazole were identified as soil metabolites. Metabolite CGA 205375 consistently reached a maximum (expressed as parent) of 5?10% of the dose and had begun to decline by the end of the observation period. Metabolite 1,2,4-triazole typically reached a maximum (expressed as parent) around 20% of the dose during the observation period.

Section 13 - DISPOSAL CONSIDERATIONS

Disposal Instructions

All waste must be handled in accordance with local, state and federal regulations. Puncture containers to prevent re-use and bury at an authorized landfill.

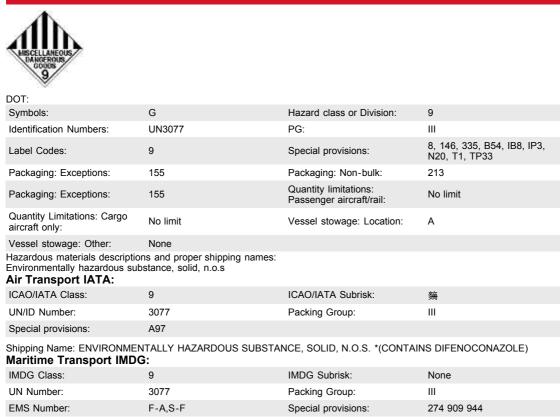
Legislation addressing waste disposal requirements may differ by country, state and/ or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked.

A Hierarchy of Controls seems to be common - the user should investigate:

- Reduction
- Reuse
- Recycling
- Disposal (if all else fails)

This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. Shelf life considerations should also be applied in making decisions of this type. Note that properties of a material may change in use, and recycling or reuse may not always be appropriate.

DO NOT allow wash water from cleaning equipment to enter drains. Collect all wash water for treatment before disposal.


Recycle wherever possible.

Consult manufacturer for recycling options or consult Waste Management Authority for disposal if no suitable treatment or

disposal facility can be identified.

- Dispose of by: Burial in a licensed land-fill or Incineration in a licensed apparatus (after admixture with suitable combustible material)
- Decontaminate empty containers. Observe all label safeguards until containers are cleaned and destroyed.

Section 14 - TRANSPORTATION INFORMATION

Limited Quantities: 5 kg

Shipping Name: ENVIRONMENTALLY HAZARDOUS SUBSTANCE, SOLID, N.O.S.(contains difenoconazole)

Section 15 - REGULATORY INFORMATION

difenoconazole (CAS: 119446-68-3) is found on the following regulatory lists;

"US - Hawaii Air Contaminant Limits", "US - Oregon Permissible Exposure Limits (Z3)", "US OSHA Permissible Exposure Levels (PELs) - Table Z3"

Section 16 - OTHER INFORMATION

LIMITED EVIDENCE

- Inhalation may produce severe health damage*
- Cumulative effects may result following exposure*.
- Limited evidence of a carcinogenic effect*.
- May possibly affect fertility*
- May possibly be harmful to the fetus/ embryo*.
 * (limited evidence).

Reasonable care has been taken in the preparation of this information, but the author makes no warranty of merchantability or any other warranty, expressed or implied, with respect to this information. The author makes no representations and assumes no liability for any direct, incidental or consequential damages resulting from its use. For additional technical information please call our toxicology department on +800 CHEMCALL

 Classification of the mixture and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references. A list of reference resources used to assist the committee may be found at: www.chemwatch.net/references.

The (M)SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

This document is copyright. Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH. TEL (+61 3) 9572 4700.

Issue Date: May-18-2008 Print Date:Apr-21-2010