Farnesol

sc-204748

Material Safety Data Sheet

Hazard Alert Code Key: EXTREME HIGH MODERATE LOW

Section 1 - CHEMICAL PRODUCT AND COMPANY IDENTIFICATION

PRODUCT NAME

Farnesol

STATEMENT OF HAZARDOUS NATURE

CONSIDERED A HAZARDOUS SUBSTANCE ACCORDING TO OSHA 29 CFR 1910.1200.

NFPA FLAMM SILITY HEALTH AZARD INSTAULITY

SUPPLIER

Santa Cruz Biotechnology, Inc. 2145 Delaware Avenue Santa Cruz, California 95060 800.457.3801 or 831.457.3800

EMERGENCY:

ChemWatch

Within the US & Canada: 877-715-9305 Outside the US & Canada: +800 2436 2255 (1-800-CHEMCALL) or call +613 9573 3112

SYNONYMS

C15-H26-O, CH3)2C=CHCH2CH2C(CH3)=CHCH2CH2C(CH3)=CHCH2OH, "natural product", "essential oil", "2, 6, 10-dodecatriene-1-ol, 3, 7, 11-trimethyl-", "3, 7, 11-trimethyl-2, 6, 10-dodecatriene-1-ol", "sesquiterpene alcohol", "farnesyl alcohol"

Section 2 - HAZARDS IDENTIFICATION

CHEMWATCH HAZARD RATINGS

		Min	Max	
Flammability:	1			
Toxicity:	0			
Body Contact:	2		Min/Nil=0 Low=1	
Reactivity:	2		Moderate=2	
Chronic:	2		High=3 Extreme=4	

CANADIAN WHMIS SYMBOLS

EMERGENCY OVERVIEW

risk

Contact with combustible material may cause fire.

May cause SENSITIZATION by skin contact.

Very toxic to aquatic organisms, may cause long-term adverse effects in the aquatic environment.

POTENTIAL HEALTH EFFECTS

ACUTE HEALTH EFFECTS

SWALLOWED

■ Although ingestion is not thought to produce harmful effects, the material may still be damaging to the health of the individual following ingestion, especially where pre-existing organ (e.g. liver, kidney) damage is evident. Present definitions of harmful or toxic substances are generally based on doses producing mortality (death) rather than those producing morbidity (disease, ill-health). Gastrointestinal tract discomfort may produce nausea and vomiting. In an occupational setting however, ingestion of insignificant quantities is not thought to be cause for concern.

FYF

■ Although the liquid is not thought to be an irritant, direct contact with the eye may produce transient discomfort characterized by tearing or conjunctival redness (as with windburn).

SKIN

- Skin contact is not thought to have harmful health effects, however the material may still produce health damage following entry through wounds, lesions or abrasions.
- There is some evidence to suggest that this material can cause inflammation of the skin on contact in some persons.
- Essential oils irritate the skin and redden it, causing at first warmth and smarting, followed by some local loss of sensation. They have been used to treat chronic inflammatory conditions and to relieve neuralgia and rheumatic pain. Care should be taken to avoid blistering; these oils may also produce sensitization.

INHALED

- There is some evidence to suggest that the material can cause respiratory irritation in some persons. The body's response to such irritation can cause further lung damage.
- Inhalation hazard is increased at higher temperatures.
- The material has NOT been classified as "harmful by inhalation". This is because of the lack of corroborating animal or human evidence. In the absence of such evidence, care should nevertheless be taken to ensure exposure is kept to a minimum and that suitable control measures be used, in an occupational setting to control vapors, fumes and aerosols.
- Acute effects from inhalation of high concentrations of vapor may be nose, throat and chest irritation with coughing, sneezing and possible nausea.

CHRONIC HEALTH EFFECTS

■ Skin contact with the material is more likely to cause a sensitization reaction in some persons compared to the general population.

Peroxidisable terpenes and terpenoids should only be used when the level of peroxides is kept to the lowest practicable level, for instance by adding antioxidants at the time of production. Such products should have a peroxide value of less than 10 millimoles peroxide per liter. This requirement is based on the published literature mentioning sensitising properties when containing peroxides.

In the presence of air, a number of common flavour and fragrance chemicals can form peroxides surprisingly fast. Antioxidants can in most cases minimise the oxidation.

Fragrance terpenes are generally easily oxidised in air. Non-oxidised limonene, linalool and caryophyllene turned out to be very weak sensitizers, however after oxidation limonene hydroperoxide and linalool hydroperoxide are strong sensitizers. Of the patients tested 2.6% showed positive reaction to oxidised limonene, 1.3% to oxidised linalool, 1.1% to linalool hydroperoxide, 0.5% to oxidised caryophyllene, while testing with caryophyllene oxide and oxidised myrcene resulted in few positive patch tests. 2/3 of the patients reacting positive to oxidised terpenes had fragrance related contact allergy and/or positive history for adverse reactions to fragrances.

As well as the hydroperoxides produced by linalol, limonene and delta-3-carene other oxidation and resinification effects progressively causes other fairly major changes in essential oil quality over time. Autoxidation of fragrance terpenes contributes greatly to fragrance allergy, which emphasizes the need of testing with compounds that patients are actually exposed to and not only with the ingredients originally applied in commercial formulations.

Section 3 - COMPOSITION / INFORMATION ON INGREDIENTS

NAME CAS RN % farnesol 4602-84-0 >98

Section 4 - FIRST AID MEASURES

SWALLOWED

· Immediately give a glass of water. · First aid is not generally required. If in doubt, contact a Poisons Information Center or a doctor.

EYE

■ If this product comes in contact with eyes: · Wash out immediately with water. · If irritation continues, seek medical attention. · Removal of contact lenses after an eye injury should only be undertaken by skilled personnel.

SKIN

■ If skin contact occurs: · Immediately remove all contaminated clothing, including footwear · Flush skin and hair with running water (and soap if available). · Seek medical attention in event of irritation.

INHALED

· If fumes or combustion products are inhaled remove from contaminated area. · Other measures are usually unnecessary.

NOTES TO PHYSICIAN

■ Treat symptomatically.

In acute poisonings by essential oils the stomach should be emptied by aspiration and lavage. Give a saline purgative such as sodium sulfate (30 g in 250 ml water) unless catharsis is already present. Demulcent drinks may also be given. Large volumes of fluid should be given provided renal function is adequate. [MARTINDALE: The Extra Pharmacopoeia, 28th Ed.].

Section 5 - FIRE FIGHTING MEASURES		
Vapour Pressure (mmHG):	Negligible	
Upper Explosive Limit (%):	Not available	
Specific Gravity (water=1):	0.8871 (20 C)	
Lower Explosive Limit (%):	Not available	

EXTINGUISHING MEDIA

- · Foam
- · Dry chemical powder.
- BCF (where regulations permit).
- Carbon dioxide.
- · Water spray or fog Large fires only.

FIRE FIGHTING

- · Alert Emergency Responders and tell them location and nature of hazard.
- · Wear full body protective clothing with breathing apparatus.
- · Prevent, by any means available, spillage from entering drains or water course.
- · Use water delivered as a fine spray to control fire and cool adjacent area.
- Avoid spraying water onto liquid pools.
- · Do not approach containers suspected to be hot.
- · Cool fire exposed containers with water spray from a protected location.
- · If safe to do so, remove containers from path of fire.

GENERAL FIRE HAZARDS/HAZARDOUS COMBUSTIBLE PRODUCTS

- · Combustible.
- · Slight fire hazard when exposed to heat or flame.
- · Heating may cause expansion or decomposition leading to violent rupture of containers.
- · On combustion, may emit toxic fumes of carbon monoxide (CO).
- · May emit acrid smoke.
- · Mists containing combustible materials may be explosive.

Combustion products include: carbon dioxide (CO2), other pyrolysis products typical of burning organic material.

CARE: Water in contact with hot liquid may cause foaming and a steam explosion with wide scattering of hot oil and possible severe burns. Foaming may cause overflow of containers and may result in possible fire.

FIRE INCOMPATIBILITY

■ Avoid contamination with oxidizing agents i.e. nitrates, oxidizing acids,chlorine bleaches, pool chlorine etc. as ignition may result.

PERSONAL PROTECTION

Glasses

Chemical goggles.

Gloves:

Respirator:

Type A-P Filter of sufficient capacity

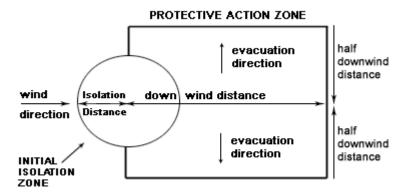
Section 6 - ACCIDENTAL RELEASE MEASURES

MINOR SPILLS

- Environmental hazard contain spillage.
- \cdot Clean up all spills immediately.
- · Avoid breathing vapors and contact with skin and eves.
- · Control personal contact by using protective equipment.
- · Contain and absorb spill with sand, earth, inert material or vermiculite.
- · Wipe up.
- · Place in a suitable labeled container for waste disposal.

MAJOR SPILLS

■ Environmental hazard - contain spillage.


CARE: Absorbent material wet with occluded oil must be wet with water as they may auto-oxidize, become self heating and ignite.

Some oils slowly oxidize when spread in a film and oil on cloths, mops, absorbents may auto-oxidize and generate heat, smoulder, ignite and burn. In the workplace oily rags should be collected and immersed in water.

Moderate hazard.

- · Clear area of personnel and move upwind.
- · Alert Emergency Responders and tell them location and nature of hazard.
- · Wear breathing apparatus plus protective gloves.
- · Prevent, by any means available, spillage from entering drains or water course.
- No smoking, naked lights or ignition sources. Increase ventilation.
- · Stop leak if safe to do so.
- · Contain spill with sand, earth or vermiculite.
- · Collect recoverable product into labeled containers for recycling.
- · Absorb remaining product with sand, earth or vermiculite.
- · Collect solid residues and seal in labeled drums for disposal.
- · Wash area and prevent runoff into drains.
- · If contamination of drains or waterways occurs, advise emergency services.

PROTECTIVE ACTIONS FOR SPILL

From IERG (Canada/Australia)
Isolation Distance Downwind Protection Distance 10 meters

FOOTNOTES

1 PROTECTIVE ACTION ZONE is defined as the area in which people are at risk of harmful exposure. This zone assumes that random changes in wind direction confines the vapour plume to an area within 30 degrees on either side of the predominant wind direction, resulting in a crosswind protective action distance equal to the downwind protective action distance.

2 PROTECTIVE ACTIONS should be initiated to the extent possible, beginning with those closest to the spill and working away from the site in the downwind direction. Within the protective action zone a level of vapour concentration may exist resulting in nearly all unprotected persons becoming incapacitated and unable to take protective action and/or incurring serious or irreversible health effects.

3 INITIAL ISOLATION ZONE is determined as an area, including upwind of the incident, within which a high probability of localised wind reversal may expose nearly all persons without appropriate protection to life-threatening concentrations of the material.

4 SMALL SPILLS involve a leaking package of 200 litres (55 US gallons) or less, such as a drum (jerrican or box with inner containers). Larger packages leaking less than 200 litres and compressed gas leaking from a small cylinder are also considered "small spills". LARGE SPILLS involve many small leaking packages or a leaking package of greater than 200 litres, such as a cargo tank, portable tank or a "one-tonne" compressed gas cylinder.

5 Guide 171 is taken from the US DOT emergency response guide book.

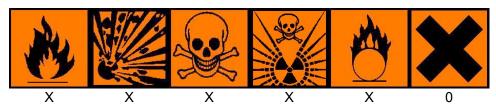
6 IERG information is derived from CANUTEC - Transport Canada.

Section 7 - HANDLING AND STORAGE

PROCEDURE FOR HANDLING

- \cdot DO NOT allow clothing wet with material to stay in contact with skin.
- · Avoid all personal contact, including inhalation.
- \cdot Wear protective clothing when risk of exposure occurs.
- · Use in a well-ventilated area.
- \cdot Prevent concentration in hollows and sumps.
- DO NOT enter confined spaces until atmosphere has been checked.
- \cdot Avoid smoking, naked lights or ignition sources.
- · Avoid contact with incompatible materials.
- When handling, DO NOT eat, drink or smoke.
- · Keep containers securely sealed when not in use.
- · Avoid physical damage to containers.
- · Always wash hands with soap and water after handling.
- Work clothes should be laundered separately.
- · Use good occupational work practice.
- Observe manufacturer's storing and handling recommendations.
- · Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions.

RECOMMENDED STORAGE METHODS


- · Metal can or drum
- \cdot Packing as recommended by manufacturer.

· Check all containers are clearly labeled and free from leaks.

STORAGE REQUIREMENTS

- · Store in original containers.
- · Keep containers securely sealed.
- · Store in a cool, dry, well-ventilated area.
- · Store away from incompatible materials and foodstuff containers.
- · Protect containers against physical damage and check regularly for leaks.
- · Observe manufacturer's storing and handling recommendations.

SAFE STORAGE WITH OTHER CLASSIFIED CHEMICALS

- X: Must not be stored together
- O: May be stored together with specific preventions
- +: May be stored together

Section 8 - EXPOSURE CONTROLS / PERSONAL PROTECTION

EXPOSURE CONTROLS

Source	Material	TWA ppm	TWA mg/m³
Canada - Alberta Occupational Exposure Limits	farnesol (Turpentine and selected monoterpenes)	20	111

ENDOELTABLE

MATERIAL DATA

FARNESOL:

■ Sensory irritants are chemicals that produce temporary and undesirable side-effects on the eyes, nose or throat. Historically occupational exposure standards for these irritants have been based on observation of workers' responses to various airborne concentrations. Present day expectations require that nearly every individual should be protected against even minor sensory irritation and exposure standards are established using uncertainty factors or safety factors of 5 to 10 or more. On occasion animal no-observable-effect-levels (NOEL) are used to determine these limits where human results are unavailable. An additional approach, typically used by the TLV committee (USA) in determining respiratory standards for this group of chemicals, has been to assign ceiling values (TLV C) to rapidly acting irritants and to assign short-term exposure limits (TLV STELs) when the weight of evidence from irritation, bioaccumulation and other endpoints combine to warrant such a limit. In contrast the MAK Commission (Germany) uses a five-category system based on intensive odour, local irritation, and elimination half-life. However this system is being replaced to be consistent with the European Union (EU) Scientific Committee for Occupational Exposure Limits (SCOEL); this is more closely allied to that of the USA.

OSHA (USA) concluded that exposure to sensory irritants can:

- · cause inflammation
- · cause increased susceptibility to other irritants and infectious agents
- · lead to permanent injury or dysfunction
- · permit greater absorption of hazardous substances and
- · acclimate the worker to the irritant warning properties of these substances thus increasing the risk of overexposure.

PERSONAL PROTECTION

Consult your EHS staff for recommendations

EYE

- · Safety glasses with side shields.
- · Chemical goggles.
- · Contact lenses pose a special hazard; soft lenses may absorb irritants and all lenses concentrate them. DO NOT wear contact lenses.

HANDS/FEET

■ Wear chemical protective gloves, eg. PVC.

Wear safety footwear or safety gumboots, eg. Rubber.

NOTE: The material may produce skin sensitization in predisposed individuals. Care must be taken, when removing gloves and other

protective equipment, to avoid all possible skin contact.

Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include: such as:

- · frequency and duration of contact,
- · chemical resistance of glove material,
- · glove thickness and
- · dexterity

Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739).

- When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374) is recommended.
- · When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374) is recommended.
- · Contaminated gloves should be replaced.

Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.

· Polyethylene gloves.

OTHER

- · Overalls.
- · P.V.C. apron.
- · Barrier cream.
- · Skin cleansing cream.
- · Eye wash unit.

RESPIRATOR

■ Selection of the Class and Type of respirator will depend upon the level of breathing zone contaminant and the chemical nature of the contaminant. Protection Factors (defined as the ratio of contaminant outside and inside the mask) may also be important.

Breathing Zone Level ppm (volume)	Maximum Protection Factor	Half-face Respirator	Full-Face Respirator
1000	10	A-1 P	-
1000	50	=	A-1 P
5000	50	Airline*	-
5000	100	=	A-2 P
10000	100	-	A-3 P
	100+		Airline* *

^{* -} Continuous Flow ** - Continuous-flow or positive pressure demand.

The local concentration of material, quantity and conditions of use determine the type of personal protective equipment required.

Use appropriate NIOSH-certified respirator based on informed professional

judgement. In conditions where no reasonable estimate of exposure can be

made, assume the exposure is in a concentration IDLH and use NIOSH-certified

full face pressure demand SCBA with a minimum service life of 30 minutes, or

a combination full facepiece pressure demand SAR with auxiliary self-contained air supply. Respirators provided only for escape from IDLH atmospheres shall be

NIOSH-certified for escape from the atmosphere in which they will be used.

ENGINEERING CONTROLS

■ Local exhaust ventilation usually required. If risk of overexposure exists, wear an approved respirator. Correct fit is essential to obtain adequate protection an approved self contained breathing apparatus (SCBA) may be required in some situations. Provide adequate ventilation in warehouse or closed storage area.

Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to effectively remove the contaminant.

Type of Contaminant:	Air Speed:
solvent, vapors, degreasing etc., evaporating from tank (in still air).	0.25-0.5 m/s (50-100 f/min.)
aerosols, fumes from pouring operations, intermittent container filling, low speed conveyer transfers, welding, spray drift, plating acid fumes, pickling (released at low velocity into zone of active generation)	0.5-1 m/s (100-200 f/min.)
direct spray, spray painting in shallow booths, drum filling, conveyer	4.2.5 m/s (200.500.6/min.)

loading, crusher dusts, gas discharge (active generation into zone of 1-2.5 m/s (200-500 f/min.) rapid air motion)

grinding, abrasive blasting, tumbling, high speed wheel generated dusts (released at high initial velocity into zone of very high rapid air 2.5-10 m/s (500-2000 f/min.) motion).

Within each range the appropriate value depends on

Within cach range the appropriate value depends on:	
Lower end of the range	Upper end of the range
1: Room air currents minimal or favorable to capture	1: Disturbing room air currents
2: Contaminants of low toxicity or of nuisance value only.	2: Contaminants of high toxicity
3: Intermittent, low production.	3: High production, heavy use
4: Large hood or large air mass in motion	4: Small hood-local control only

Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 1-2 m/s (200-400 f/min) for extraction of solvents generated in a tank 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used.

Care: Atmospheres in bulk storages and even apparently empty tanks may be hazardous by oxygen depletion. Atmosphere must be checked before entry.

Requirements of State Authorities concerning conditions for tank entry must be met. Particularly with regard to training of crews for tank entry; work permits; sampling of atmosphere; provision of rescue harness and protective gear as needed.

Section 9 - PHYSICAL AND CHEMICAL PROPERTIES

PHYSICAL PROPERTIES

Liquid.

Does not mix with water.

Floats on water.

State	Liquid	Molecular Weight	222.41
Melting Range (°F)	Not available	Viscosity	Not available
Boiling Range (°F)	230- 235.4 (0.2 mm)	Solubility in water (g/L)	Immiscible
Flash Point (°F)	204.8 (trans)	pH (1% solution)	Not applicable
Decomposition Temp (°F)	Not available	pH (as supplied)	Not applicable
Autoignition Temp (°F)	Not available	Vapour Pressure (mmHG)	Negligible
Upper Explosive Limit (%)	Not available	Specific Gravity (water=1)	0.8871 (20 C)
Lower Explosive Limit (%)	Not available	Relative Vapor Density (air=1)	Not available
Volatile Component (%vol)	Negligible	Evaporation Rate	Not available

APPEARANCE

Thin oily liquid; does not mix with water. Mixes with hydrocarbon solvents.

Section 10 - CHEMICAL STABILITY

CONDITIONS CONTRIBUTING TO INSTABILITY

- · Presence of incompatible materials.
- Product is considered stable.
- · Hazardous polymerization will not occur.

STORAGE INCOMPATIBILITY

· Protect from light.

Avoid reaction with oxidizing agents.

HAZARD: Rags wet / soaked with unsaturated hydrocarbons / drying oils auto oxidize; may generate heat and in-time smoulder and ignite. Oily cleaning rags should be collected regularly and immersed in water.

For incompatible materials - refer to Section 7 - Handling and Storage.

Section 11 - TOXICOLOGICAL INFORMATION

FARNESOL

TOXICITY AND IRRITATION

■ unless otherwise specified data extracted from RTECS - Register of Toxic Effects of Chemical Substances.

TOXICITY IRRITATION
Oral (rat) LD50: 6000 mg/kg
Nil Reported

Oral (mouse) LD50: 7400 mg/kg

Intraperitoneal (mouse) LD50: 443 mg/kg

■ Contact allergies quickly manifest themselves as contact eczema, more rarely as urticaria or Quincke's edema. The pathogenesis of contact eczema involves a cell-mediated (T lymphocytes) immune reaction of the delayed type. Other allergic skin reactions, e.g. contact urticaria, involve antibody-mediated immune reactions. The significance of the contact allergen is not simply determined by its sensitization potential: the distribution of the substance and the opportunities for contact with it are equally important. A weakly sensitizing substance which is widely distributed can be a more important allergen than one with stronger sensitizing potential with which few individuals come into contact. From a clinical point of view, substances are noteworthy if they produce an allergic test reaction in more than 1% of the persons tested.

Insect ovarian mutagen in vitro

Section 12 - ECOLOGICAL INFORMATION

Refer to data for ingredients, which follows:

FARNESOL:

Marine Pollutant: Yes

- Very toxic to aquatic organisms.
- Do NOT allow product to come in contact with surface waters or to intertidal areas below the mean high water mark. Do not contaminate water when cleaning equipment or disposing of equipment wash-waters.

Wastes resulting from use of the product must be disposed of on site or at approved waste sites.

■ Substances containing unsaturated carbons are ubiquitous in indoor environments. They result from many sources (see below). Most are reactive with environmental ozone and many produce stable products which are thought to adversely affect human health. The potential for surfaces in an enclosed space to facilitate reactions should be considered.

· ·		Major Stable Products produced following	
Source of unsaturated substances	Unsaturated substances (Reactive Emissions)	reaction with ozone.	
Occupants (exhaled breath, ski oils, personal care products)	Isoprene, nitric oxide, squalene, unsaturated sterols, oleic acid and other unsaturated fatty acids, unsaturated oxidation products	Methacrolein, methyl vinyl ketone, nitrogen dioxide, acetone, 6MHQ, geranyl acetone, 4OPA, formaldehyde, nonanol, decanal, 9-oxo-nonanoic acid, azelaic acid, nonanoic acid.	
Soft woods, wood flooring, including cypress, cedar and silver fir boards, houseplants	Isoprene, limonene, alpha-pinene, other terpenes and sesquiterpenes	Formaldehyde, 4-AMC, pinoaldehyde, pinic acid, pinonic acid, formic acid, methacrolein, methyl vinyl ketone, SOAs including ultrafine particles	
Carpets and carpet backing	4-Phenylcyclohexene, 4-vinylcyclohexene, styrene, 2-ethylhexyl acrylate, unsaturated fatty acids and esters	Formaldehyde, acetaldehyde, benzaldehyde, hexanal, nonanal, 2-nonenal	
Linoleum and paints/polishes containing linseed oil	Linoleic acid, linolenic acid	Propanal, hexanal, nonanal, 2-heptenal, 2-nonenal, 2-decenal, 1-pentene-3-one, propionic acid, n-butyric acid	
Latex paint	Residual monomers	Formaldehyde	
Certain cleaning products, polishes, waxes, ai fresheners	Limonene, alpha-pinene, terpinolene, alpha- r terpineol, linalool, linalyl acetate and other terpenoids, longifolene and other sesquiterpenes	Formaldehyde, acetaldehyde, glycoaldehyde, formic acid, acetic acid, hydrogen and organic peroxides, acetone, benzaldehyde, 4-hydroxy-4-methyl-5-hexen-1-al, 5-ethenyl-dihydro-5-methyl-2(3H)-furanone, 4-AMC, SOAs including ultrafine particles	
Natural rubber adhesive	Isoprene, terpenes	Formaldehyde, methacrolein, methyl vinyl ketone	
Photocopier toner, printed paper, styrene polymers	Styrene	Formaldehyde, benzaldehyde	
Environmental tobacco smoke	Styrene, acrolein, nicotine	Formaldehyde, benzaldehyde, hexanal, glyoxal, N-methylformamide, nicotinaldehyde, cotinine	
Soiled clothing, fabrics, bedding	Squalene, unsaturated sterols, oleic acid and other saturated fatty acids	Acetone, geranyl acetone, 6MHO, 40PA, formaldehyde, nonanal, decanal, 9-oxononanoic acid, azelaic acid, nonanoic acid	
Soiled particle filters	Unsaturated fatty acids from plant waxes, leaf litter, and other vegetative debris; soot; diesel particles		
Ventilation ducts and duct liners	Unsaturated fatty acids and esters, unsaturated oils, neoprene	C5 to C10 aldehydes	
"Urban grime"	Polycyclic aromatic hydrocarbons	Oxidized polycyclic aromatic hydrocarbons	
Perfumes, colognes, essential oils (e.g. lavender, eucalyptus, tea tree)	Limonene, alpha-pinene, linalool, linalyl acetate, terpinene-4-ol, gamma-terpinene	Formaldehyde, 4-AMC, acetone, 4-hydroxy- 4-methyl-5-hexen-1-al, 5-ethenyl-dihydro- 5-methyl-2(3H) furanone, SOAs including ultrafine particles	
Overall home emissions	Limonene, alpha-pinene, styrene	Formaldehyde, 4-AMC, pinonaldehyde, acetone, pinic acid, pinonic acid, formic acid, benzaldehyde, SOAs including ultrafine particles	
Abbreviations: 4 AMC, 4 goots! 1 methylosolebovene: SMHO, 6 methyl F bentone 2 and 4 ODA, 4 evenentarial SOA, Secondary Organia			

Abbreviations: 4-AMC, 4-acetyl-1-methylcyclohexene; 6MHQ, 6-methyl-5-heptene-2-one, 4OPA, 4-oxopentanal, SOA, Secondary Organic Aerosols

Reference: Charles J Weschler; Environmental Helath Perspectives, Vol 114, October 2006.

■ Terpenes such as limonene and isoprene contribute to aerosol and photochemical smog formation. Emissions of biogenic hydrocarbons, such as the terpenes, to the atmosphere may either decrease ozone concentrations when oxides of nitrogen are low or, if emissions take place in polluted air (i.e containing high concentrations of nitrogen oxides), leads to an increase in ozone concentrations. Lower terpenoids can react with unstable reactive gases and may act as precursors of photochemical smog therefore indirectly influencing community and ecosystem properties.

Complex chlorinated terpenes such as toxaphene (a persistent, mobile and toxic insecticide) and its degradation products, were produced by

photoinitiated reactions in an aqueous system, initially containing limonene and other monoterpenes, simulating pulp bleach conditions. The reactions of ozone with larger unsaturated compounds, such as the terpenes can give rise to oxygenated species with low vapour pressures that subsequently condense to form secondary organic aerosol.

Ecotoxicity

Ingredient Persistence: Water/Soil Persistence: Air Bioaccumulation Mobility farnesol HIGH LOW MED

GESAMP/EHS COMPOSITE LIST - GESAMP Hazard Profiles

Legend: EHS=EHS Number (EHS=GESAMP Working Group on the Evaluation of the Hazards of Harmful Substances Carried by Ships) NRT=Net Register Tonnage, A1a=Bioaccumulation log Pow, A1b=Bioaccumulation BCF, A1=Bioaccumulation, A2=Biodegradation, B1=Acuteaquatic toxicity LC/ECIC50 (mg/l), B2=Chronic aquatic toxicity NOEC (mg/l), C1=Acute mammalian oral toxicity LD50 (mg/kg), C2=Acutemammalian dermal toxicity LD50 (mg/kg), C3=Acute mammalian inhalation toxicity LC50 (mg/kg), D1=Skin irritation & corrosion, D2=Eye irritation & corrosion, D3=Long-term health effects, E1=Tainting, E2=Physical effects on wildlife & benthic habitats, E3=Interference with coastal amenities, For column A2: R=Readily biodegradable, NR=Not readily biodegradable. For column D3: C=Carcinogen, M=Mutagenic, R=Reprotoxic, S=Sensitising, A=Aspiration hazard, T=Target organ systemic toxicity, L=Lunginjury, N=Neurotoxic, I=Immunotoxic. For column E1: NT=Not tainting (tested), T=Tainting test positive. For column E2: Fp=Persistent floater, F=Floater, S=Sinking substances. The numerical scales start from 0 (no hazard), while higher numbers reflect increasing hazard. (GESAMP/EHS Composite List of Hazard Profiles - Hazard evaluation of substances transported by ships)

Section 13 - DISPOSAL CONSIDERATIONS

Disposal Instructions

All waste must be handled in accordance with local, state and federal regulations.

! Puncture containers to prevent re-use and bury at an authorized landfill.

Legislation addressing waste disposal requirements may differ by country, state and/ or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked.

A Hierarchy of Controls seems to be common - the user should investigate:

- · Reduction
- · Reuse
- · Recycling
- · Disposal (if all else fails)

This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. If it has been contaminated, it may be possible to reclaim the product by filtration, distillation or some other means. Shelf life considerations should also be applied in making decisions of this type. Note that properties of a material may change in use, and recycling or reuse may not always be appropriate.

DO NOT allow wash water from cleaning equipment to enter drains. Collect all wash water for treatment before disposal.

- · Recycle wherever possible or consult manufacturer for recycling options.
- · Consult Waste Management Authority for disposal.
- · Bury or incinerate residue at an approved site.
- · Recycle containers if possible, or dispose of in an authorized landfill.

Section 14 - TRANSPORTATION INFORMATION

DOT:

Symbols: G Hazard class or Division: 9 Identification Numbers: UN3082 PG: III Label Codes: 9 Special provisions: 8, 146, 335, IB3,

T4, TP1, TP29

Packaging: Exceptions: 155 Packaging: Non- bulk: 203 Packaging: Exceptions: 155 Quantity limitations: No limit

Passenger aircraft/rail:

Quantity Limitations: Cargo No limit Vessel stowage: Location: A

aircraft only:

Vessel stowage: Other: None

Hazardous materials descriptions and proper shipping names:

Environmentally hazardous substance, liquid, n.o.s

Air Transport IATA:

ICAO/IATA Class: 9 ICAO/IATA Subrisk: None

UN/ID Number: 3082 Packing Group: III

Special provisions: A97

Cargo Only

Packing Instructions: 914 Maximum Qty/Pack: 450 L Passenger and Cargo Passenger and Cargo Packing Instructions: 914 Maximum Qty/Pack: 450 L

Passenger and Cargo Limited Quantity Passenger and Cargo Limited Quantity

Packing Instructions: Y914 Maximum Qty/Pack: 30 kg G

Shipping Name: ENVIRONMENTALLY HAZARDOUS SUBSTANCE, LIQUID,

N.O.S. *(CONTAINS FARNESOL)

Maritime Transport IMDG:

IMDG Class: 9 IMDG Subrisk: None
UN Number: 3082 Packing Group: III

EMS Number: F-A, S-F Special provisions: 179 274 335 909

Limited Quantities: 5 L Marine Pollutant: Yes

Shipping Name: ENVIRONMENTALLY HAZARDOUS SUBSTANCE, LIQUID, N.O.S.(contains farnesol)

Section 15 - REGULATORY INFORMATION

REGULATIONS

farnesol (CAS: 4602-84-0,106-28-5) is found on the following regulatory lists;

"International Fragrance Association (IFRA) Survey: Transparency List", "US DOE Temporary Emergency Exposure Limits (TEELs)", "US Food Additive Database", "US Toxic Substances Control Act (TSCA) - Inventory"

Section 16 - OTHER INFORMATION

LIMITED EVIDENCE

- May produce discomfort of the respiratory system and skin*.
- * (limited evidence).

Ingredients with multiple CAS Nos

Ingredient Name CAS farnesol 4602-84-0, 106-28-5

Reasonable care has been taken in the preparation of this information, but the author makes no warranty of merchantability or any other warranty, expressed or implied, with respect to this information. The author makes no representations and assumes no liability for any direct, incidental or consequential damages resulting from its use. For additional technical information please call our toxicology department on +800 CHEMCALL.

- Classification of the mixture and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references.

 A list of reference resources used to assist the committee may be found at:

 www.chemwatch.net/references.
- The (M)SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

This document is copyright. Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH. TEL (+61 3) 9572 4700.

Issue Date: Jul-2-2008 Print Date:Sep-29-2010