1,2-Dioleoyl-sn-glycerol

sc-204958

Section 1 - CHEMICAL PRODUCT AND COMPANY IDENTIFICATION

PRODUCT NAME
1,2-Dioleoyl-sn-glycerol

STATEMENT OF HAZARDOUS NATURE

NFPA

SUPPLIER
Company: Santa Cruz Biotechnology, Inc.
Address:
2145 Delaware Ave
Santa Cruz, CA 95060
Telephone: 800.457.3801 or 831.457.3800
Emergency Tel: CHEMWATCH: From within the US and Canada:
877-715-9305
Emergency Tel: From outside the US and Canada: +800 2436 2255
(1-800-CHEMCALL) or call +613 9573 3112

PRODUCT USE
Intermediate.

SYNONYMS
C39-H72-O5, "1, 2-dioleoyl-sn-glycerol", "1, 2-dioleoyl-sn-glycerol", "olein, 1, 2-di-, (S)-(-)-", "olein, 1, 2-di-, (S)-(-)-", "sn-1, 2-dioleoylglycerol", "sn-1, 2-dioleoylglycerol", "9-octadecanoic acid (Z)-, 1-(hydroxymethyl)-1, 2-ethanediyl ester, (S)-", "9-octadecanoic acid (Z)-, 1-(hydroxymethyl)-1, 2-ethanediyl ester, (S)-", "D-alpha, beta-diolein", "D-alpha, beta-diolein", "(S)-glycerol 1, 2-dioleate", "(S)-glycerol 1, 2-dioleate", "glyceryl dioleate"

Section 2 - HAZARDS IDENTIFICATION

CANADIAN WHMIS SYMBOLS

EMERGENCY OVERVIEW
RISK
POTENTIAL HEALTH EFFECTS
ACUTE HEALTH EFFECTS
1,2-Dioleoyl-sn-glycerol

sc-204958

Material Safety Data Sheet

Hazard Alert Code Key:
- **EXTREME**
- **HIGH**
- **MODERATE**
- **LOW**

SWALLOWED
- The material has NOT been classified as "harmful by ingestion". This is because of the lack of corroborating animal or human evidence. The material may still be damaging to the health of the individual, following ingestion, especially where pre-existing organ (e.g. liver, kidney) damage is evident. Present definitions of harmful or toxic substances are generally based on doses producing mortality (death) rather than those producing morbidity (disease, ill-health). Gastrointestinal tract discomfort may produce nausea and vomiting. In an occupational setting however, unintentional ingestion is not thought to be cause for concern.
- Use in food, and as food additive indicates high degree of tolerance.

EYE
- Although the liquid is not thought to be an irritant, direct contact with the eye may produce transient discomfort characterized by tearing or conjunctival redness (as with windburn).

SKIN
- The liquid may be miscible with fats or oils and may degrease the skin, producing a skin reaction described as non-allergic contact dermatitis. The material is unlikely to produce an irritant dermatitis as described in EC Directives.
- Irritation and skin reactions are possible with sensitive skin.
- Open cuts, abraded or irritated skin should not be exposed to this material.
- Entry into the blood-stream, through, for example, cuts, abrasions or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected.

INHALED
- The material is not thought to produce adverse health effects or irritation of the respiratory tract (as classified using animal models). Nevertheless, good hygiene practice requires that exposure be kept to a minimum and that suitable control measures be used in an occupational setting.
- Not normally a hazard due to non-volatile nature of product.
- Fine mists generated from plant/ vegetable (or more rarely from animal) oils may be hazardous. Extreme heating for prolonged periods, at high temperatures, may generate breakdown products which include acrolein and acrolein-like substances.

CHRONIC HEALTH EFFECTS
- There has been some concern that this material can cause cancer or mutations but there is not enough data to make an assessment.

Synthetic 1,2-diglycerides of short chain (C6, C8, C10) fatty acids are activators of protein kinase C (PKC). PKC is a serine-threonine kinase which also requires calcium ion for its activation. Activated PKC phosphorylates proteins of the cellular signal cascade, which eventually induce expression of growth regulatory genes. This, in turn, may promote the growth of tumours. Structural analogues of the 1,2-diglycerides, such as the phorbolesters, have been shown to strongly promote such an event.

Glycerol dilaurate, glycerol diarachidolate, glycerol dibehenate, glycerol diervenate, glycerol dihydroxystearate, glycerol diisopalmitate, glycerol disosteartate, glycerol diniloleate, glycerol dimyristate, glycerol dioleate, glycerol diricinoleate, glycerol dipalmitoleate, glycerol distearate, glycerol palmitate lactate, glycerol stearate citrate, glycerol stearate lactate, and glycerol stearate succinate are diacylglycerols (also known as diglycerides or glycerol diesters) that function as skin conditioning agents-emollients in cosmetics. Only glycerol dilaurate (up to 5%), glycerol distearate (up to 43%), glycerol dioleate (up to 2%), glycerol dipalmitoleate (up to 7%), and glycerol stearate lactate (up to 5%) are reported to be in current use. Production proceeds from fully refined vegetable oils, which are further processed using hydrogenation and fractionation techniques, and the end products are produced by reacting selected mixtures of the partly hydrogenated, partly fractionated oils and fats with vegetable-derived glycerine to yield partial glycerides. In the final stage of the production process, the products are purified by deodorization, which effectively removes pesticide residues and lower boiling residues such as residues of halogenated solvents and aromatic solvents. Diglycerides have been approved by the Food and Drug Administration (FDA) for use as indirect food additives. Normally, these ingredients are 1,3-diglycerides, but are easily isomerised to the 1,2-diglycerides form. The 1,3-diglyceride isomer is not a significant toxicant in acute, short-term, subchronic, or chronic animal tests. Glycerol dilaurate was a mild primary irritant in albino rabbits, but not a skin sensitisser in guinea pig maximization tests. Diacylglycerol oil was not genotoxic in the Ames test, in mammalian Chinese hamster lung cells, or in a rodent bone marrow micronucleus assay. An eye shadow containing 1.5% glycerol dilaurate did not induce skin irritation in a single insult patch test, but mild skin irritation reactions to a foundation containing the same concentration were observed. A trade mixture containing an unspecified concentration of glycerol dibehenate did not induce irritation or significant cutaneous intolerance in a 48-h occlusive patch test. In maximization tests, neither an eye shadow nor a foundation containing 1.5% glycerol dilaurate was a skin sensitisser. Sensitisation was not induced in subjects patch tested with 50% w/w glycerol dioleate in a repeated insult, occlusive patch test. Glycerol palmitate lactate (50% w/v) did not induce skin irritation or sensitization in subjects patch tested in a repeat-insult patch test. Phototoxicity or photoallergenicity was not induced in healthy volunteers tested with a lipstick containing 1.0% Glycerol rosinate. Two diacylglycerols, 1-oleoyl-2-acetoyl-sn-glycerol and 1,2-dipalmitoyl-sn-glycerol, did not alter cell proliferation (as determined by DNA synthesis) in normal human dermal fibroblasts in vitro at doses up to 10 μg/ml. In the absence of initiation, Glycerol distearate induced a moderate hyperplastic response in randomly bred mice of a tumor-resistant strain, and with 9,10-dimethyl-1,2-benzanthracene (DMBA) initiation, an increase in the total cell count was observed. In a glycerol monoester study, a single application of DMBA to the skin followed by 5% glycerol stearate twice weekly produced no tumors, but slight epidermal hyperplasia at the site of application. Glycerol dioleate induced transformation in 3-methylcholanthrene-initiated BALB/c3T3 A313-1-1 cloned cells in vitro. A tumour-promoting dosing regimen that consisted of multiple applications of 10 μmol of a 1,2-diacylglycerol (sn-1,2-didecanoylglycerol) to female mice twice daily for 1 week caused more than a 60% decrease in protein kinase C (PKC) activity and marked epidermal hyperplasia. Applications of 10 umol sn-1,2-didecanoylglycerol twice weekly for 1 week caused a decrease in cytosolic PKC activity, an increase in particulate PKC...
activity, and no epidermal hyperplasia. In studies of the tumour-promoting activity of 1,2-diacylglycerols, dose and the exposure regimen by which the dose is delivered play a role in tumor promotion. The 1,2-diacylglycerol–induced activation of PKC may also relate to the saturation of the fatty acid in the 1 or 2 position; 1,2-Diacylglycerols with two saturated fatty acids are less effective. Also, the activity of 1,2-diacylglycerols may be reduced when the fatty acid moiety in the structure is a long-chain fatty acid. A histological evaluation was performed on human skin from female volunteers (18 to 56 years old) who had applied a prototype lotion or placebo formulation, both containing 0.5% Glyceryl Dilaureate, consecutively for 16 weeks or 21 weeks. Skin irritation was not observed in any of the subjects tested. Biopsies (2 mm) taken from both legs of five subjects indicated no recognizable abnormalities of the skin; the epidermis was normal in thickness, and there was no evidence of scaling, inflammation, or neoplasms in any of the tissues that were evaluated. The available safety test data indicate that diglycerides in the 1,3-diester form do not present any significant acute toxicity risk, nor are these ingredients irritating, sensitizing, or photosensitising. Whereas no data are available regarding reproductive or developmental toxicity, there is no reason to suspect any such toxicity because the dermal absorption of these chemicals is negligible. 1,3-Diglycerides contain 1,2-diglycerides, raising the concern that 1,2-diglycerides could potentially induce hyperplasia. Data regarding the induction of PKC and the tumour promotion potential of 1,2-diacylglycerols increases the level of concern. Most of the diglycerides considered above, however, have fatty acid chains longer than 14 carbons and none have mixed saturated/unsaturated fatty acid moieties. In a 21-week use study of a prototype lotion containing 0.5% glyceryl dilaurate (a 14-carbon chain fatty acid) indicated no evidence of scaling, inflammation, or neoplasms in biopsy specimens. Also, DNA synthesis assays on glyceryl dilaurate and glyceryl distearate indicated that neither chemical altered cell proliferation (as determined by DNA synthesis) in normal human dermal fibroblasts in vitro at doses up to 10 µg/ml. However the concentration of these ingredients can vary (up to 43% for glyceryl disostearate in lipstick), the frequency of application can be several times daily, and the proportion of diglycerides that are inactive 1,3 isomers versus potentially biologically active 1,2 isomers is unknown; as a precaution it is believed that each use should be examined to ensure the absence of epidermal hyperplasia during product development and testing. In the absence of inhalation toxicity data on the glyceryl diesters it is thought that these ingredients can be used safely in aerosolised products because they are not respirable. Although there are gaps in knowledge about product use, the overall information available on the types of products in which these ingredients are used and at what concentration indicate a pattern of use. Within this overall pattern of use, the CIR Expert Panel considers all ingredients in this group to be safe.

1,2-Dioleoyl-sn-glycerol

Material Safety Data Sheet

Section 5 - FIRE FIGHTING MEASURES

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vapour Pressure (mmHg)</td>
<td>Not available</td>
</tr>
<tr>
<td>Upper Explosive Limit (%)</td>
<td>Not available</td>
</tr>
<tr>
<td>Specific Gravity (water=1)</td>
<td>Not available</td>
</tr>
<tr>
<td>Lower Explosive Limit (%)</td>
<td>Not available</td>
</tr>
</tbody>
</table>

EXTINGUISHING MEDIA
- Foam.
- Dry chemical powder.
- BCF (where regulations permit).
- Carbon dioxide.
- Water spray or fog - Large fires only.

FIRE FIGHTING
- Alert Emergency Responders and tell them location and nature of hazard.
- Wear full body protective clothing with breathing apparatus.
- Prevent, by any means available, spillage from entering drains or water course.
- Use water delivered as a fine spray to control fire and cool adjacent area.
- Avoid spraying water onto liquid pools.
- Do not approach containers suspected to be hot.
- Cool fire exposed containers with water spray from a protected location.
- If safe to do so, remove containers from path of fire.

GENERAL FIRE HAZARDS/HAZARDOUS COMBUSTIBLE PRODUCTS
- Combustible.
- Slight fire hazard when exposed to heat or flame.
- Heating may cause expansion or decomposition leading to violent rupture of containers.
- On combustion, may emit toxic fumes of carbon monoxide (CO).
- May emit acrid smoke.
- Mists containing combustible materials may be explosive.
- Combustion products include: carbon dioxide (CO2), acrolein, other pyrolysis products typical of burning organic material. May emit poisonous fumes.

FIRE INCOMPATIBILITY
- Avoid contamination with oxidizing agents i.e. nitrates, oxidizing acids, chlorine bleaches, pool chlorine etc. as ignition may result.

PERSONAL PROTECTION
- Glasses:
 - Chemical goggles.
- Gloves:
- Respirator:
 - Type A Filter of sufficient capacity

Section 6 - ACCIDENTAL RELEASE MEASURES
MINOR SPILLS
- Slippery when spilt.
- Remove all ignition sources.
- Clean up all spills immediately.
- Avoid breathing vapors and contact with skin and eyes.
- Control personal contact by using protective equipment.
- Contain and absorb spill with sand, earth, inert material or vermiculite.
- Wipe up.
- Place in a suitable labeled container for waste disposal.

MAJOR SPILLS
- Slippery when spilt.
- Moderate hazard.
- Clear area of personnel and move upwind.
- Alert Emergency Responders and tell them location and nature of hazard.
- Wear breathing apparatus plus protective gloves.
- Prevent, by any means available, spillage from entering drains or water course.
- No smoking, naked lights or ignition sources. Increase ventilation.
- Stop leak if safe to do so.
- Contain spill with sand, earth or vermiculite.
- Collect recoverable product into labeled containers for recycling.
- Absorb remaining product with sand, earth or vermiculite.
- Collect solid residues and seal in labeled drums for disposal.
- Wash area and prevent runoff into drains.
- If contamination of drains or waterways occurs, advise emergency services.

ACUTE EXPOSURE GUIDELINE LEVELS (AEGL) (in ppm)
AEGL 1: The airborne concentration of a substance above which it is predicted that the general population, including susceptible individuals, could experience notable discomfort, irritation, or certain asymptomatic nonsensory effects. However, the effects are not disabling and are transient and reversible upon cessation of exposure.
AEGL 2: The airborne concentration of a substance above which it is predicted that the general population, including susceptible individuals, could experience irreversible or other serious, long-lasting adverse health effects or an impaired ability to escape.
AEGL 3: The airborne concentration of a substance above which it is predicted that the general population, including susceptible individuals, could experience life-threatening health effects or death.

Section 7 - HANDLING AND STORAGE

PROCEDURE FOR HANDLING
- Rags wet / soaked with unsaturated hydrocarbons / drying oils may auto-oxidise; generate heat and, in-time, smoulder and ignite. This is especially the case where oil-soaked materials are folded, bunched, compressed, or piled together - this allows the heat to accumulate or even accelerate the reaction.
- Oily cleaning rags should be collected regularly and immersed in water, or spread to dry in safe-place away from direct sunlight or stored, immersed, in solvents in suitably closed containers.
- Avoid all personal contact, including inhalation.
- Wear protective clothing when risk of exposure occurs.
- Use in a well-ventilated area.
- Prevent concentration in hollows and sumps.
- DO NOT enter confined spaces until atmosphere has been checked.
- DO NOT allow material to contact humans, exposed food or food utensils.
- Avoid contact with incompatible materials.
- When handling, DO NOT eat, drink or smoke.
- Keep containers securely sealed when not in use.
- Avoid physical damage to containers.
1,2-Dioleoyl-sn-glycerol

Material Safety Data Sheet

sc-204958

Hazard Alert Code Key:

EXTREME	**HIGH**	**MODERATE**	**LOW**

- Always wash hands with soap and water after handling.
- Work clothes should be laundered separately.
- Launder contaminated clothing before re-use.
- Use good occupational work practice.
- Observe manufacturer's storing and handling recommendations.
- Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions are maintained.

RECOMMENDED STORAGE METHODS

- Metal can or drum
- Packing as recommended by manufacturer.
- Check all containers are clearly labeled and free from leaks.

STORAGE REQUIREMENTS

- Store in original containers.
- Keep containers securely sealed.
- No smoking, naked lights or ignition sources.
- Store in a cool, dry, well-ventilated area.
- Store away from incompatible materials and foodstuff containers.
- Protect containers against physical damage and check regularly for leaks.
- Observe manufacturer's storing and handling recommendations.

SAFE STORAGE WITH OTHER CLASSIFIED CHEMICALS

| + | + | + | + | X | + |

- **X**: Must not be stored together
- **O**: May be stored together with specific precautions
- **+**: May be stored together

Section 8 - EXPOSURE CONTROLS / PERSONAL PROTECTION

EXPOSURE CONTROLS

The following materials had no OELs on our records
- glyceryl 1,2-sn-dioleate: CAS:24529-88-2

MATERIAL DATA

GLYCERYL 1,2-SN-DIOLEATE:

- No exposure limits set by NOHSC or ACGIH.

PERSONAL PROTECTION

Consult your EHS staff for recommendations

EYE
1,2-Dioleoyl-sn-glycerol

Material Safety Data Sheet

sc-204958

Hazard Alert Code Key:

- EXTREME
- HIGH
- MODERATE
- LOW

- Safety glasses with side shields
- Chemical goggles.
- Contact lenses pose a special hazard; soft lenses may absorb irritants and all lenses concentrate them.

HANDS/FEET
- Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include: such as:
 - frequency and duration of contact,
 - chemical resistance of glove material,
 - glove thickness and
 - dexterity
- Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739).
 - When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374) is recommended.
 - When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374) is recommended.
- Contaminated gloves should be replaced.
- Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.
- Wear chemical protective gloves, eg. PVC.
- Wear safety footwear or safety gumboots, eg. Rubber.

OTHER
- Overalls.
- P.V.C. apron.
- Barrier cream.
- Skin cleansing cream.
- Eye wash unit.

RESPIRATOR
- Selection of the Class and Type of respirator will depend upon the level of breathing zone contaminant and the chemical nature of the contaminant. Protection Factors (defined as the ratio of contaminant outside and inside the mask) may also be important.

<table>
<thead>
<tr>
<th>Breathing Zone Level ppm (volume)</th>
<th>Maximum Protection Factor</th>
<th>Half-face Respirator</th>
<th>Full-Face Respirator</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000</td>
<td>10</td>
<td>A-1</td>
<td>-</td>
</tr>
<tr>
<td>1000</td>
<td>50</td>
<td>-</td>
<td>A-1</td>
</tr>
<tr>
<td>5000</td>
<td>50</td>
<td>Airline*</td>
<td>-</td>
</tr>
<tr>
<td>5000</td>
<td>100</td>
<td>-</td>
<td>A-2</td>
</tr>
<tr>
<td>10000</td>
<td>100</td>
<td>-</td>
<td>A-3</td>
</tr>
</tbody>
</table>

* - Continuous Flow ** - Continuous-flow or positive pressure demand.

The local concentration of material, quantity and conditions of use determine the type of personal protective equipment required.

Use appropriate NIOSH-certified respirator based on informed professional judgement. In conditions where no reasonable estimate of exposure can be made, assume the exposure is in a concentration IDLH and use NIOSH-certified full face pressure demand SCBA with a minimum service life of 30 minutes, or a combination full facepiece pressure demand SAR with auxiliary self-contained air supply. Respirators provided only for escape from IDLH atmospheres shall be NIOSH-certified for escape from the atmosphere in which they will be used.

ENGINEERING CONTROLS
- General exhaust is adequate under normal operating conditions. If risk of overexposure exists, wear an approved respirator. Correct fit is essential to obtain adequate protection. Provide adequate ventilation in warehouse or closed storage areas. Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to effectively remove the contaminant.

<table>
<thead>
<tr>
<th>Type of Contaminant</th>
<th>Air Speed:</th>
</tr>
</thead>
<tbody>
<tr>
<td>solvent, vapors, degreasing etc., evaporating from tank (in still air)</td>
<td>0.25-0.5 m/s (50-100 f/min)</td>
</tr>
<tr>
<td>aerosols, fumes from pouring operations, intermittent container filling, low speed conveyer transfers, welding, spray drift, plating acid fumes, pickling (released at low velocity into zone of active generation)</td>
<td>0.5-1 m/s (100-200 f/min.)</td>
</tr>
</tbody>
</table>
1,2-Dioleoyl-sn-glycerol

sc-204958

Material Safety Data Sheet

Hazard Alert Code Key:

<table>
<thead>
<tr>
<th>EXTREME</th>
<th>HIGH</th>
<th>MODERATE</th>
<th>LOW</th>
</tr>
</thead>
</table>

direct spray, spray painting in shallow booths, drum filling, conveyor loading, crusher dusts, gas discharge (active generation into zone of rapid air motion)

1-2.5 m/s (200-500 f/min)

grinding, abrasive blasting, tumbling, high speed wheel generated dusts (released at high initial velocity into zone of very high rapid air motion).

2.5-10 m/s (500-2000 f/min.)

Within each range the appropriate value depends on:

<table>
<thead>
<tr>
<th>Lower end of the range</th>
<th>Upper end of the range</th>
</tr>
</thead>
<tbody>
<tr>
<td>1: Room air currents minimal or favorable to capture</td>
<td>1: Disturbing room air currents</td>
</tr>
<tr>
<td>2: Contaminants of low toxicity or of nuisance value only</td>
<td>2: Contaminants of high toxicity</td>
</tr>
<tr>
<td>3: Intermittent, low production.</td>
<td>3: High production, heavy use</td>
</tr>
<tr>
<td>4: Large hood or large air mass in motion</td>
<td>4: Small hood - local control only</td>
</tr>
</tbody>
</table>

Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 1-2 m/s (200-400 f/min.) for extraction of solvents generated in a tank 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used.

Section 9 - PHYSICAL AND CHEMICAL PROPERTIES

PHYSICAL PROPERTIES

Liquid.

Does not mix with water.

<table>
<thead>
<tr>
<th>State</th>
<th>Liquid</th>
<th>Molecular Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>621.00</td>
</tr>
<tr>
<td>Melting Range (°F)</td>
<td>Not available</td>
<td>Viscosity</td>
</tr>
<tr>
<td>Boiling Range (°F)</td>
<td>Not available</td>
<td>Solubility in water (g/L)</td>
</tr>
<tr>
<td>Flash Point (°F)</td>
<td>>230</td>
<td>pH (1% solution)</td>
</tr>
<tr>
<td>Decomposition Temp (°F)</td>
<td>Not available.</td>
<td>pH (as supplied)</td>
</tr>
<tr>
<td>Autoignition Temp (°F)</td>
<td>Not available</td>
<td>Vapour Pressure (mmHg)</td>
</tr>
<tr>
<td>Upper Explosive Limit (%)</td>
<td>Not available</td>
<td>Specific Gravity (water=1)</td>
</tr>
<tr>
<td>Lower Explosive Limit (%)</td>
<td>Not available</td>
<td>Relative Vapor Density (air=1)</td>
</tr>
<tr>
<td>Volatile Component (%vol)</td>
<td>Not available</td>
<td>Evaporation Rate</td>
</tr>
</tbody>
</table>

APPEARANCE

Liquid; does not mix well with water. Soluble in chloroform. Will discolor in air, light.

Section 10 - CHEMICAL STABILITY

CONDITIONS CONTRIBUTING TO INSTABILITY

- Presence of incompatible materials.
- Product is considered stable.
- Hazardous polymerization will not occur.

STORAGE INCOMPATIBILITY

- Food grade materials must be protected from all possible contaminants.
- Materials soaked with plant/vegetable derived (and rarely, animal) oils may undergo spontaneous combustion.
- Avoid reaction with oxidizing agents.
- Avoid strong acids, bases.
1,2-Dioleoyl-sn-glycerol

sc-204958

Hazard Alert Code Key:

| EXTREME | HIGH | MODERATE | LOW |

For incompatible materials - refer to Section 7 - Handling and Storage.

Section 11 - TOXICOLOGICAL INFORMATION

glyceryl 1,2-sn-dioleate

TOXICITY AND IRRITATION

■ No significant acute toxicological data identified in literature search.

Section 12 - ECOLOGICAL INFORMATION

Refer to data for ingredients, which follows:

GLYCERYL 1,2-SN-DIOLEATE:

■ DO NOT discharge into sewer or waterways.

Section 13 - DISPOSAL CONSIDERATIONS

Disposal Instructions

All waste must be handled in accordance with local, state and federal regulations.

 Legislation addressing waste disposal requirements may differ by country, state and/or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked.

A Hierarchy of Controls seems to be common - the user should investigate:

● Reduction
● Reuse
● Recycling
● Disposal (if all else fails)

This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. If it has been contaminated, it may be possible to reclaim the product by filtration, distillation or some other means. Shelf life considerations should also be applied in making decisions of this type. Note that properties of a material may change in use, and recycling or reuse may not always be appropriate.

DO NOT allow wash water from cleaning equipment to enter drains. Collect all wash water for treatment before disposal.

● Recycle wherever possible or consult manufacturer for recycling options.
● Consult Waste Management Authority for disposal.
● Bury or incinerate residue at an approved site.
● Recycle containers if possible, or dispose of in an authorized landfill.

Section 14 - TRANSPORTATION INFORMATION

NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS: DOT, IATA, IMDG

Section 15 - REGULATORY INFORMATION

No data for glyceryl 1,2-sn-dioleate (CAS: 24529-88-2)

Section 16 - OTHER INFORMATION

LIMITED EVIDENCE

■ Limited evidence of a carcinogenic effect*.

* (limited evidence).

Reasonable care has been taken in the preparation of this information, but the author makes no warranty of
1,2-Dioleoyl-sn-glycerol
sc-204958

Hazard Alert Code Key: EXTREME HIGH MODERATE LOW

merchantability or any other warranty, expressed or implied, with respect to this information. The author makes no
to this information. The author makes no representations and assumes no liability for any direct, incidental or consequential damages resulting from its use.
For additional technical information please call our toxicology department on +800 CHEMCALL.

Classification of the mixture and its individual components has drawn on official and authoritative sources as well as independent review by
the Chemwatch Classification committee using available literature references.
A list of reference resources used to assist the committee may be found at:
www.chemwatch.net/references.

The (M)SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the
reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use,
frequency of use and current or available engineering controls must be considered.

This document is copyright. Apart from any fair dealing for the purposes of private study, research, review or
criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written
permission from CHEMWATCH. TEL (+61 3) 9572 4700.

Issue Date: Sep-21-2009
Print Date: May-11-2010